Skip to main content
Log in

Digoxin reduces the mutagenic effects of Mitomycin C in human and rodent cell lines

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Digoxin is a drug widely used to treat heart failure and studies have demonstrated its potential as anticancer agent. In addition, digoxin presents the potential to interact with a series of other compounds used in medicine. The aim of the present study was to evaluate in vitro the cytotoxicity, genotoxicity and mutagenicity of digoxin and its potential to interact with the mutagen Mitomycin C (MMC). The cytotoxicity of digoxin was assessed by employing the MTT method and the comet assay was performed to assess the genotoxicity of this medicine in CHO-K1 and HeLa cell lines. Besides, the cytokinesis-block micronucleus assay was performed to assess the mutagenicity and the antimutagenicity of this drug. The Ames assay was also performed with TA98 and TA100 strains of S. typhimurium. Results showed that digoxin was cytotoxic, genotoxic and mutagenic for HeLa and CHO-K1 cell lines at concentrations many times higher than those observed in human therapeutic conditions. Nevertheless, an antimutagenic effect against the mutagen MMC was observed on both cell lines in concentrations near those used therapeutically in humans. This chemoprotective effect observed is an interesting finding that should be better explored regarding its impact in anticancer chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahern TP, Lash TL, Sørensen HT, Pedersen L (2008) Digoxin treatment is associated with an increased incidence of breast cancer: a population-based case-control study. Breast Cancer Res 10:R102. doi:10.1186/bcr2205

    Article  Google Scholar 

  • Ahern TP, Tamimi RM, Rosner BA, Hankinson SE (2014) Digoxin use and risk of invasive breast cancer: evidence from the Nurses’ Health Study and meta-analysis. Breast Cancer Res Treat 144:427–435. doi:10.1007/s10549-014-2886-x

    Article  CAS  Google Scholar 

  • Bielawski K, Winnicka K, Bielawska A (2006) Inhibition of DNA topoisomerases I and II, and growth inhibition of breast cancer MCF-7 cells by ouabain, digoxin and proscillaridin A. Biol Pharm Bull 29:1493–1497. doi:10.1248/bpb.29.1493

    Article  CAS  Google Scholar 

  • Biggar RJ, Wohlfahrt J, Oudin A et al (2011) Digoxin use and the risk of breast cancer in women. J Clin Oncol 29:2165–2170. doi:10.1200/JCO.2010.32.8146

    Article  CAS  Google Scholar 

  • Boursi B, Haynes K, Mamtani R, Yang Y-X (2014) Digoxin use and the risk for colorectal cancer. Pharmacoepidemiol Drug Saf 23:1147–1153. doi:10.1002/pds.3717

    Article  CAS  Google Scholar 

  • Brambilla G, Martelli A (2009) Update on genotoxicity and carcinogenicity testing of 472 marketed pharmaceuticals. Mutat Res Mutat Res 681:209–229. doi:10.1016/j.mrrev.2008.09.002

    Article  CAS  Google Scholar 

  • Brambilla G, Mattioli F, Robbiano L, Martelli A (2013) Genotoxicity and carcinogenicity studies of bronchodilators and antiasthma drugs. Basic Clin Pharmacol Toxicol 112:302–313. doi:10.1111/bcpt.12054

    Article  CAS  Google Scholar 

  • Cerella C, Dicato M, Diederich M (2013) Assembling the puzzle of anti-cancer mechanisms triggered by cardiac glycosides. Mitochondrion 13:225–234

    Article  CAS  Google Scholar 

  • Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261. doi:10.1385/MB:26:3:249

    Article  CAS  Google Scholar 

  • Dorai T, Aggarwal BB (2004) Role of chemopreventive agents in cancer therapy. Cancer Lett 215:129–140

    Article  CAS  Google Scholar 

  • Eastmond DA, Tucker JD (1989) Identification of aneuploidy-inducing agents using cytokinesis-blocked human lymphocytes and an antikinetochore antibody. Environ Mol Mutagen 13:34–43. doi:10.1002/em.2850130104

    Article  CAS  Google Scholar 

  • Felth J, Rickardson L, Rosén J et al (2009) Cytotoxic effects of cardiac glycosides in colon cancer cells, alone and in combination with standard chemotherapeutic drugs. J Nat Prod 72:1969–1974. doi:10.1021/np900210m

    Article  CAS  Google Scholar 

  • Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95

    Article  CAS  Google Scholar 

  • Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2:1084–1104. doi:10.1038/nprot.2007.77

    Article  CAS  Google Scholar 

  • Godard T, Deslandes E, Sichel F et al (2002) Detection of topoisomerase inhibitor-induced DNA strand breaks and apoptosis by the alkaline comet assay. Mutat Res 520:47–56. doi:10.1016/S1383-5718(02)00174-2

    Article  CAS  Google Scholar 

  • Gomes CC, Moreira LM, Santos VJSV et al (2011) Assessment of the genetic risks of a metallic alloy used in medical implants. Genet Mol Biol 121:116–121

    Article  Google Scholar 

  • Gonçalves A, de Lima A, da Silva Barbosa M et al (2014) Synthesis and biological evaluation of novel 3-alkylpyridine marine alkaloid analogs with promising anticancer activity. Mar Drugs 12:4361–4378. doi:10.3390/md12084361

    Article  Google Scholar 

  • Gontijo VS, Espuri PF, Alves RB et al (2015) Leishmanicidal, antiproteolytic, and mutagenic evaluation of alkyltriazoles and alkylphosphocholines. Eur J Med Chem 101:24–33. doi:10.1016/j.ejmech.2015.06.005

    Article  CAS  Google Scholar 

  • Gupta RS, Chopra A, Stetsko DK (1986) Cellular basis for the species differences in sensitivity to cardiac glycosides (digitalis). J Cell Physiol 127:197–206. doi:10.1002/jcp.1041270202

    Article  CAS  Google Scholar 

  • Hajji N, Mateos S, Pastor N et al (2005) Induction of genotoxic and cytotoxic damage by aclarubicin, a dual topoisomerase inhibitor. Mutat Res 583:26–35. doi:10.1016/j.mrgentox.2005.01.012

    Article  CAS  Google Scholar 

  • Hallböök H, Felth J, Eriksson A et al (2011) Ex vivo activity of cardiac glycosides in acute leukaemia. PLoS One 6:e15718. doi:10.1371/journal.pone.0015718

    Article  Google Scholar 

  • Huang YT, Chueh SC, Teng CM, Guh JH (2004) Investigation of ouabain-induced anticancer effect in human androgen-independent prostate cancer PC-3 cells. Biochem Pharmacol 67:727–733. doi:10.1016/j.bcp.2003.10.013

    Article  CAS  Google Scholar 

  • Hung Y, Liu HE (2012) A hearty solution for acute myeloid leukemia. Acta Pharmacol Sin 33:1–2. doi:10.1038/aps.2011.197

    Article  CAS  Google Scholar 

  • Lu G, Liu S, Huang S et al (2014) Multiple effects of digoxin on subsets of cancer-associated genes through the alternative splicing pathway. Biochimie 106:131–139. doi:10.1016/j.biochi.2014.08.013

    Article  CAS  Google Scholar 

  • Manoharan K, Banerjee MR (1985) β-Carotene reduces sister chromatid exchanges induced by chemical carcinogens in mouse mammary cells in organ culture. Cell Biol Int Rep 9:783–789. doi:10.1016/0309-1651(85)90096-7

    Article  CAS  Google Scholar 

  • Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res Mol Mech Mutagen 455:29–60. doi:10.1016/S0027-5107(00)00064-6

    Article  CAS  Google Scholar 

  • Nasu K, Nishida M, Ueda T et al (2005) Bufalin induces apoptosis and the G0/G1 cell cycle arrest of endometriotic stromal cells: a promising agent for the treatment of endometriosis. Mol Hum Reprod 11:817–823. doi:10.1093/molehr/gah249

    Article  CAS  Google Scholar 

  • Newman RA, Yang P, Pawlus AD, Block KI (2008) Cardiac glycosides as novel cancer therapeutic agents. Mol Interv 8:36–49. doi:10.1124/mi.8.1.8

    Article  CAS  Google Scholar 

  • Olive PL, Banáth JP (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1:23–29. doi:10.1038/nprot.2006.5

    Article  CAS  Google Scholar 

  • Özdemir A, Şimay YD, İbişoğlu B et al (2016) Cardiac glycoside-induced cell death and Rho/Rho kinase pathway: implication of different regulation in cancer cell lines. Steroids 109:29–43. doi:10.1016/j.steroids.2016.03.015

    Article  Google Scholar 

  • Rahimtoola S, Tak T (1996) The use of digitalis in heart failure. Curr Probl Cardiol 21:781–853. doi:10.1016/S0146-2806(96)80001-6

    Article  CAS  Google Scholar 

  • Ramirez-Ortega M, Maldonado-Lagunas V, Melendez-Zajgla J et al (2006) Proliferation and apoptosis of HeLa cells induced by in vitro stimulation with digitalis. Eur J Pharmacol 534:71–76. doi:10.1016/j.ejphar.2006.01.035

    Article  CAS  Google Scholar 

  • Rascón-Valenzuela L, Velázquez C, Garibay-Escobar A et al (2015) Antiproliferative activity of cardenolide glycosides from Asclepias subulata. J Ethnopharmacol 171:280–286. doi:10.1016/j.jep.2015.05.057

    Article  Google Scholar 

  • Rocha SC, Pessoa MTC, Neves LDR et al (2014) 21-benzylidene digoxin: a proapoptotic cardenolide of cancer cells that up-regulates Na, K-ATPase and epithelial tight junctions. PLoS One 9:e108776. doi:10.1371/journal.pone.0108776

    CAS  Google Scholar 

  • Santos FV, Andreo M, Nasser ALM et al (2013) Absence of mutagenicity of plants used to treat gastrointestinal disorders. Arch Biol Sci 65:191–195. doi:10.2298/ABS1301191S

    Article  Google Scholar 

  • Schmitt AC, Ravazzolo AP, von Poser GL (2001) Investigation of some Hypericum species native to Southern of Brazil for antiviral activity. J Ethnopharmacol 77:239–245. doi:10.1016/S0378-8741(01)00314-2

    Article  CAS  Google Scholar 

  • Schoner W, Scheiner-Bobis G (2007) Endogenous and exogenous cardiac glycosides and their mechanisms of action. Am J Cardiovasc Drugs 7:173–189. doi:10.1152/ajpcell.00098.2007

    Article  CAS  Google Scholar 

  • Schoonen WGEJ, De Roos JADM, Westerink WMA, Débiton E (2005) Cytotoxic effects of 110 reference compounds on HepG2 cells and for 60 compounds on HeLa, ECC-1 and CHO cells. II mechanistic assays on NAD(P)H, ATP and DNA contents. Toxicol In Vitro 19:491–503. doi:10.1016/j.tiv.2005.01.002

    Article  CAS  Google Scholar 

  • Sedigh-ardekani M, Saadat I, Saadat M (2013) Evaluation of chromosome aberrations induced by digoxin in Chinese Hamster Ovary. EXCLI J 12:523–527

    Google Scholar 

  • Sloczyska K, Powroznik B, Pekala E, Waszkielewicz AM (2014) Antimutagenic compounds and their possible mechanisms of action. J Appl Genet 55:273–285. doi:10.1007/s13353-014-0198-9

    Article  Google Scholar 

  • Snyder RD, Green JW (2001) A review of the genotoxicity of marketed pharmaceuticals. Mutat Res 488:151–169

    Article  CAS  Google Scholar 

  • Sporn MB, Dunlop NM, Newton DL, Smith JM (1976) Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed Proc 35:1332–1338

    CAS  Google Scholar 

  • Stenkvist B, Bengtsson E, Eriksson O et al (1979) Cardiac glycosides and breast cancer. Lancet 313:563

    Article  Google Scholar 

  • Stenkvist B, Bengtsson E, Dahlqvist B et al (1982) Cardiac glycosides and breast cancer, revisited. N Engl J Med 306:484

    CAS  Google Scholar 

  • Thome RG, dos Santos HB, dos Santos FV et al (2012) Evaluation of healing wound and genotoxicity potentials from extracts hydroalcoholic of Plantago major and Siparuna guianensis. Exp Biol Med 237:1379–1386. doi:10.1258/ebm.2012.012139

    Article  CAS  Google Scholar 

  • Titenko-Holland N, Windham G, Kolachana P et al (1997) Genotoxicity of malathion in human lymphocytes assessed using the micronucleus assay in vitro and in vivo: a study of malathion-exposed workers. Mutat Res 388:85–95

    Article  CAS  Google Scholar 

  • Wang Y, Qiu Q, Shen J-J et al (2012) Cardiac glycosides induce autophagy in human non-small cell lung cancer cells through regulation of dual signaling pathways. Int J Biochem Cell Biol 44:1813–1824. doi:10.1016/j.biocel.2012.06.028

    Article  CAS  Google Scholar 

  • Waters MD, Brady AL, Stack HF, Brockman HE (1990) Antimutagenicity profiles for some model compounds. Mutat Res Genet Toxicol 238:57–85

    Article  CAS  Google Scholar 

  • Xue R, Han N, Xia M et al (2015) TXA9, a cardiac glycoside from Streptocaulon juventas, exerts a potent anti-tumor activity against human non-small cell lung cancer cells in vitro and in vivo. Steroids 94:51–59. doi:10.1016/j.steroids.2014.12.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Fundação de Amparo à Pesquisa de Minas Gerais—FAPEMIG (APQ-01254-15; CBB-PPM-00560-13), and the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (478629/2013-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Vieira dos Santos.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, J.T., Barbosa, M.C.d., de Camargos, L.F. et al. Digoxin reduces the mutagenic effects of Mitomycin C in human and rodent cell lines. Cytotechnology 69, 699–710 (2017). https://doi.org/10.1007/s10616-017-0078-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-017-0078-3

Keywords

Navigation