Skip to main content

Advertisement

Log in

Cell confluency analysis on microcarriers by micro-flow imaging

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The productivity of cell culture-derived vaccines grown in anchorage-dependent animal cells is limited by bioreactor surface area. One way to increase the available surface area is by growing cells as monolayers on small spheres called microcarriers, which are approximately 100–250 μm in diameter. In order for microcarrier-based cell culture to be a success, it is important to understand the kinetics of cell growth on the microcarriers. Micro-flow imaging (MFI) is a simple and powerful technique that captures images and analyzes samples as they are drawn through a precision flow cell. In addition to providing size distribution and defect frequency data to compare microcarrier lots, MFI was used to generate hundreds of images to determine cell coverage and confluency on microcarriers. Same-day manual classification of these images provided upstream cell culture teams with actionable data that informed in-process decision making (e.g. time of infection). Additionally, an automated cell coverage algorithm was developed to increase the speed and throughput of the analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abranches E, Bekman E, Henrique D, Cabral JMS (2007) Expansion of mouse embryonic stem cells on microcarriers. Biotechnol Bioeng 96:1211–1221

    Article  CAS  Google Scholar 

  • Andre FE, Booy R, Bock HL, Clemens J, Datta SK, John TJ, Lee BW, Lolekha S, Peltola H, Ruff TA, Santosham M, Schmitt HJ (2008) Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull World Health Organ 86:140–146

    Article  CAS  Google Scholar 

  • Baradez MO, Marshall D (2011) The use of multidimensional image-based analysis to accurately monitor cell growth in 3D bioreactor culture. PLoS ONE 6:e26104

    Article  CAS  Google Scholar 

  • Berry JM, Huebner E, Butler M (1996) The crystal violet nuclei staining technique leads to anomalous results in monitoring mammalian cell cultures. Cytotechnology 21:73–80

    Article  CAS  Google Scholar 

  • Bleckwenn NA, Shiloach J (2004) Large-scale cell culture. Curr Protoc Immunol. doi:10.1002/0471142735.ima01us59

    Google Scholar 

  • Bluma A, Hopfner T, Lindner P, Rehbock C, Beutel S, Riechers D, Hitzmann B, Scheper T (2010) In-situ imaging sensors for bioprocess monitoring: state of the art. Anal Bioanal Chem 398:2429–2438

    Article  CAS  Google Scholar 

  • Boudreault P, Tremblay JP, Pepin M-F, Garnier A (2001) Scale-up of a myoblast culture process. J Biotechnol 91:63–74

    Article  CAS  Google Scholar 

  • Brands R, van Scharrenburg GJM, Palache AM (1997) Development of influenza subunit vaccine produced using mammalian cell culture technology. In: Carrondo MJT, Griffiths B, Moreira JLP (eds) Animal Cell Technology. Springer, Netherlands, pp 165–167

    Chapter  Google Scholar 

  • Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8:679–698

    Article  CAS  Google Scholar 

  • Degouys V, Harfield J, Fabry L, Menozzi FD, Miller AOA (1996) Fast in situ determination of the biomass of anchorage-dependent cells. Cytotechnology 19:107–110

    Article  Google Scholar 

  • Fernandes AM, Fernandes TG, Diogo MM, da Silva CL, Henrique D, Cabral JMS (2007) Mouse embryonic stem cell expansion in a microcarrier-based stirred culture system. J Biotechnol 132:227–236

    Article  CAS  Google Scholar 

  • Forestell SP, Kalogerakis N, Behie LA, Gerson DF (1992) Development of the optimal inoculation conditions for microcarrier cultures. Biotechnol Bioeng 39:305–313

    Article  CAS  Google Scholar 

  • Frondoza C, Sohrabi A, Hungerford D (1996) Human chondrocytes proliferate and produce matrix components in microcarrier suspension culture. Biomaterials 17:879–888

    Article  CAS  Google Scholar 

  • Giard DJ, Thilly WG, Wang DI, Levine DW (1977) Virus production with a newly developed microcarrier system. Appl Environ Microbiol 34:668–672

    CAS  Google Scholar 

  • Huang CT, Sharma D, Oma P, Krishnamurthy R (2009) Quantitation of protein particles in parenteral solutions using micro-flow imaging. J Pharm Sci 98:3058–3071

    Article  CAS  Google Scholar 

  • Iyer P, Ostrove JM, Vacante D (1999) Comparison of manufacturing techniques for adenovirus production. Cytotechnology 30:169–172

    Article  CAS  Google Scholar 

  • Kenda-Ropson N, Mention D, Motte V, Genlain M, Miller AOA (2002) Microsupport with two-dimensional geometry (2D-MS). Cytotechnology 37:49–53

    Article  Google Scholar 

  • Kino-Oka M, Ogawa N, Umegaki R, Taya M (2005) Bioreactor design for successive culture of anchorage dependent cells operated in an automated manner. Tissue Eng 11:535–545

    Article  CAS  Google Scholar 

  • Lock LT, Tzanakakis ES (2009) Expansion and differentiation of human embryonic stem cells to endoderm progeny in a microcarrier stirred-suspension culture. Tissue Eng Part A 15:2051–2063

    Article  CAS  Google Scholar 

  • Lu G, Zhu L, Kong L, Zhang L, Gong Y, Zhao N, Zhang X (2006) Porous chitosan microcarriers for large scale cultivation of cells for tissue engineering: fabrication and evaluation. Tsinghua Sci Technol 11:427–432

    Article  CAS  Google Scholar 

  • Majumdar S, Ford BM, Mar KD, Sullivan VJ, Ulrich RG, D’souza AJ (2011) Evaluation of the effect of syringe surfaces on protein formulations. J Pharm Sci 100:2563–2573

    Article  CAS  Google Scholar 

  • McHugh ML (2012) Interrater reliability: the kappa statistic. Biochem Med (Zagreb) 22:276–282

    Article  Google Scholar 

  • Mendonça RZ, Arrozio SJ, Antoniazzi MM, Ferreira JMC Jr, Pereira CA (2002) Metabolic active-high density vero cell cultures on microcarriers following apoptosis prevention by galactose/glutamine feeding. J Biotechnol 97:13–22

    Article  Google Scholar 

  • Mered B, Albrecht P, Hopps HE, Petricciani JC, Salk J (1981) Propagation of poliovirus in microcarrier cultures of three monkey kidney cell lines. J Biol Stand 9:137–145

    Article  CAS  Google Scholar 

  • Nilsson K (1989) Microcarrier Cell Culture. Biotechnol Genet Eng Rev 6:403–439

    Google Scholar 

  • Patterson MK Jr (1979) Measurement of growth and viability of cells in culture. Methods Enzymol 58:141–152

    Article  Google Scholar 

  • Pons M-N, Wagner A, Vivier H, Marc A (1992) Application of quantitative image analysis to a mammalian cell line grown on microcarriers. Biotechnol Bioeng 40:187–193

    Article  CAS  Google Scholar 

  • Rappaz B, Moon I, Yi F, Javidi B, Marquet P, Turcatti G (2015) Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy. Opt Express 23:13333–13347

    Article  Google Scholar 

  • Rudolph G, Lindner P, Gierse A, Bluma A, Martinez G, Hitzmann B, Scheper T (2008) Online monitoring of microcarrier based fibroblast cultivations with in situ microscopy. Biotechnol Bioeng 99:136–145

    Article  CAS  Google Scholar 

  • Sart S, Schneider Y-J, Agathos SN (2009) Ear mesenchymal stem cells: an efficient adult multipotent cell population for rapid and scalable expansion. J Biotechnol 139:291–299

    Article  CAS  Google Scholar 

  • Serra M, Brito C, Leite SB, Gorjup E, von Briesen H, Carrondo MJT, Alves PM (2009) Stirred bioreactors for the expansion of adult pancreatic stem cells. Ann Anat 191:104–115

    Article  CAS  Google Scholar 

  • Sharma DK, King D, Oma P, Merchant C (2010) Micro-flow imaging: flow microscopy applied to sub-visible particulate analysis in protein formulations. AAPS J 12:455–464

    Article  CAS  Google Scholar 

  • Sinskey AJ, Fleischaker RJ, Tyo MA, Giard DJ, Wang DI (1981) Production of cell-derived products: virus and interferon. Ann N Y Acad Sci 369:47–59

    Article  CAS  Google Scholar 

  • Spier RE, Whiteside JP (1976) The production of foot-and-mouth disease virus from BHK 21 C 13 cells grown on the surface of DEAE sephadex A50 beads. Biotechnol Bioeng 18:659–667

    Article  CAS  Google Scholar 

  • Strehl R, Rombach-Riegraf V, Diez M, Egodage K, Bluemel M, Jeschke M, Koulov AV (2012) Discrimination between silicone oil droplets and protein aggregates in biopharmaceuticals: a novel multiparametric image filter for sub-visible particles in microflow imaging analysis. Pharm Res 29:594–602

    Article  CAS  Google Scholar 

  • van Hemert P, Kilburn DG, van Wezel AL (1969) Homogeneous cultivation of animal cells for the production of virus and virus products. Biotechnol Bioeng 11:875–885

    Article  Google Scholar 

  • van Wezel AL (1967) Growth of cell strains and primary cells on micro-carriers in homogeneous culture. Nature 216:64–65

    Article  Google Scholar 

  • Varani J, Dame M, Rediske J, Beals TF, Hillegas W (1985) Substrate-dependent differences in growth and biological properties of fibroblasts and epithelial cells grown in microcarrier culture. J Biol Stand 13:67–76

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank our colleagues in Vaccine Bioprocess Research and Development and Global Vaccines and Biologics Commercialization for samples and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Farrell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farrell, C.J., Cicalese, S.M., Davis, H.B. et al. Cell confluency analysis on microcarriers by micro-flow imaging. Cytotechnology 68, 2469–2478 (2016). https://doi.org/10.1007/s10616-016-9967-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-016-9967-0

Keywords

Navigation