Skip to main content
Log in

Real-time monitoring of hypertrophy in HL-1 cardiomyocytes by impedance measurements reveals different modes of growth

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Hypertrophic growth is a response of the heart to increased mechanical load or physiological stress. Thereby, cardiomyocytes grow in length and/or width to maintain cardiac pump function. Major signaling pathways involved in cardiomyocyte growth and remodeling have been identified during recent years including calcineurin–NFAT and PI3K–Akt signaling. Modulation of these pathways is of certain interest for therapeutic treatment of cardiac hypertrophy. However, quantification and characterization of hypertrophy in response to different stimuli or modulators is difficult. This study aims to test different read-out systems for detection and quantification of differences in hypertrophic growth in response to prohypertrophic stimuli. Real-time impedance measurements allowed the detection of distinct differences in hypertrophic growth in response to endothelin, norepinephrine, phenylephrine or BIO, which were not observable by other methods such as flow cytometry. Endothelin treatment induced a rapid and strong peak in the impedance signal concomitant with a massive reorientation of the actin cytoskeleton. Changes in expression of hypertrophy-associated genes were detected and stabilization of β-catenin was identified as a common response to all hypertrophic stimuli used in this study. Hypertrophic growth was blocked by the PI3K/mTOR inhibitor PI-103.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antos CL, McKinsey TA, Frey N, Kutschke W, McAnally J, Shelton JM, Richardson JA, Hill JA, Olson EN (2002) Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci USA 99:907–912

    Article  CAS  Google Scholar 

  • Aoyagi T, Matsui T (2011) Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure. Curr Pharm Des 17:1818–1824

    Article  CAS  Google Scholar 

  • Baurand A, Zelarayan L, Betney R, Gehrke C, Dunger S, Noack C, Busjahn A, Huelsken J, Taketo MM, Birchmeier W, Dietz R, Bergmann MW (2007) β-Catenin down-regulation is required for adaptive cardiac remodeling. Circ Res 100:1353–1362

    Article  CAS  Google Scholar 

  • Claycomb WC, Lanson NA, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, Izzo NJ (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci USA 95:2979–2984

    Article  CAS  Google Scholar 

  • Cullingford TE, Butler MJ, Marshall AK, Tham EL, Sugden PH, Clerk A (2008) Differential regulation of Krüppel-like factor family transcription factor expression in neonatal rat cardiac myocytes: effects of endothelin-1, oxidative stress and cytokines. Biochim Biophys Acta 1783:1229–1236

    Article  CAS  Google Scholar 

  • Dowling RJO, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E, Wang XS, Larsson O, Selvaraj A, Liu Y, Kozma SC, Thomas G, Sonenberg N (2010) mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 328:1172–1176

    Article  CAS  Google Scholar 

  • Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H, Mills GB, Kobayashi R, Hunter T, Lu Z (2007) Phosphorylation of β-catenin by Akt promotes β-catenin transcriptional activity. J Biol Chem 282:11221–11229

    Article  CAS  Google Scholar 

  • Haq S, Choukroun G, Knag ZB, Ranu H, Matsui T, Rosenzweig A, Molkentin JD, Alessandrini A, Woodgett J, Hajjar R, Michael A, Force T (2000) Glycogen synthase kinase-3β is a negative regulator of cardiomyocyte hypertrophy. J Cell Biol 151:117–130

    Article  CAS  Google Scholar 

  • Haq S, Michael A, Andreucci M, Bhattacharya K, Dotto P, Walters B, Woodgett J, Kilter H, Force T (2003) Stabilization of β-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth. Proc Natl Acad Sci USA 100:4610–4615

    Article  CAS  Google Scholar 

  • Harvey PA, Leinwand LA (2011) Cellular mechanisms of cardiomyopathy. J Cell Biol 194:355–365

    Article  CAS  Google Scholar 

  • Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600

    Article  CAS  Google Scholar 

  • Koshman YE, Piano MR, Russell B, Schwertz DW (2010) Signaling responses after exposure to 5 alpha-dihydrotestosterone or 17 beta-estradiol in norepinephrine-induced hypertrophy of neonatal rat ventricular myocytes. J Appl Physiol 108:686–696

    Article  CAS  Google Scholar 

  • Kuwahara K, Saito Y, Nakagawa O, Kishimoto I, Harada M, Ogawa E, Miyamoto Y, Hamanaka I, Kajiyama N, Takahashi N, Izumi T, Kawakami R, Tamura N, Ogawa Y, Nakao K (1999) the effects of the selective ROCK inhibitor, Y27632, on ET-1-induced hypertrophic response in neonatal rat cardiac myocytes—possible involvement of Rho/ROCK pathway in cardicac muscle cell hypertrophy. FEBS Lett 452:314–318

    Article  CAS  Google Scholar 

  • Kuwahara K, Kinoshita H, Kuwabara Y, Nakagawa Y, Usami S, Minami T, Yamada Y, Fujiwara M, Nakao K (2010) Myocardin-related transcription factor A is a common mediator of mechanical stress- and neurohumoral stimulation-induced cardiac hypertrophic signaling leading to activation of brain natriuretic peptide gene expression. Mol Cell Biol 30:4134–4148

    Article  CAS  Google Scholar 

  • Lamore SD, Kamendi HW, Scott CW, Dragan YP, Peters MF (2013) Cellular impedance assays for predictive preclinical drug screening of kinase inhibitor cardiovascular toxicity. Toxicol Sci 135:402–413

    Article  CAS  Google Scholar 

  • Lee CH, Inoki K, Guan KL (2007) mTOR pathway as a target in tissue hypertrophy. Annu Rev Pharmacol Toxicol 47:443–467

    Article  CAS  Google Scholar 

  • Lu J, McKinsey TA, Nicol RL, Olson EN (2000) Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylase. Proc Natl Acad Sci USA 97:4070–4075

    Article  CAS  Google Scholar 

  • Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228

    Article  CAS  Google Scholar 

  • Nishikimi T, Maeda N, Matsuoka H (2006) The role of natriuretic peptides in cardioprotection. Cardiovasc Res 69:318–328

    Article  CAS  Google Scholar 

  • Roshan-Moniri M, Young A, Reinheimer K, Rayat J, Dai LJ, Wanrock GL (2015) Dynamic assessment of cell viability, proliferation and migration using real time cell analyzer system (RTCA). Cytotechnology 67:379–386

    Article  CAS  Google Scholar 

  • Rosner M, Fuchs C, Siegel N, Valli A, Hengstschläger M (2009) Functional interaction of mammalian target of rapamycin complexes in regulating mammalian cell size and cell cycle. Hum Mol Genet 18:3298–3310

    Article  CAS  Google Scholar 

  • Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, Colucci WS, Walsh K (2005) Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest 115:2108–2118

    Article  CAS  Google Scholar 

  • Sinha D, Wang Z, Ruchalski KL, Levine JS, Krishnan S, Lieberthal W, Schwartz JH, Borkan SC (2005) Lithium activates the Wnt and phosphatidylinositol 3-kinase Akt signaling pathways to promote cell survival in the absence of soluble survival factors. Am J Physiol Renal Physiol 288:F703–F713

    Article  CAS  Google Scholar 

  • Stiber JA, Seth M, Rosenberg PB (2009) Mechanosensitive channels in striated muscle and the cardiovascular system: not quite a strech anymore. J Cardiovasc Pharmacol 54:116–122

    Article  CAS  Google Scholar 

  • Weiske J, Albring KF, Huber O (2007) The tumor suppressor Fhit acts as a repressor of β-catenin transcriptional activity. Proc Natl Acad Sci USA 104:20344–20349

    Article  CAS  Google Scholar 

  • Xi B, Wang T, Li N, Ouyang W, Zhang W, Wu J, Xu X, Wang X, Abassi YA (2011) Functional cardiotoxicity profiling and screening using the xCELLigence RTCA Cardio System. J Lab Autom 16:415–421

    Article  CAS  Google Scholar 

  • Xiao G, Mao S, Baumgarten G, Serrano J, Jordan MC, Roos KP, Fishbein MC, MacLellan WR (2001) Inducible activation of c-myc in adult myocardium in vivo provokes cardiac myocyte hypertrophy and reactivation of DNA synthesis. Circ Res 89:1122–1129

    Article  CAS  Google Scholar 

  • Yang M, Lim CC, Liao R, Zhang X (2007) A novel microfluidic impedance assay for monitoring endothelin-induced cardiomyocyte hypertrophy. Biosens Bioelectron 22:1688–1693

    Article  CAS  Google Scholar 

  • Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110:479–489

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG FOR1054, HU881/6-1 and DR498/1-2). We are very grateful to Prof. William Claycomb for providing the HL-1 cells. We thank Silke Lindemüller for helpful support in experimentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otmar Huber.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 991 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloch, L., Ndongson-Dongmo, B., Kusch, A. et al. Real-time monitoring of hypertrophy in HL-1 cardiomyocytes by impedance measurements reveals different modes of growth. Cytotechnology 68, 1897–1907 (2016). https://doi.org/10.1007/s10616-016-0001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-016-0001-3

Keywords

Navigation