Skip to main content

Advertisement

Log in

PEI/DNA formation affects transient gene expression in suspension Chinese hamster ovary cells via a one-step transfection process

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Polyethylenimine (PEI) has been used widely in transient gene expression studies of mammalian cells. We performed transient gene expression in suspension Chinese hamster ovary cells using a one-step transfection procedure in which DNA and PEI were simultaneously added to a cell culture in suspension without prior PEI/DNA complex incubation. To further understand the effect of PEI/DNA formation on the transfection and expression of exogenous gene in shaking state, we investigated the diameter and overcharge of the PEI/DNA complex. The results showed that the diameter of the complex was smaller with more positive charge when the PEI/DNA ratio was higher. Moreover, DNA more easily penetrated cells and nuclei at higher PEI concentrations. The highest transcription level, transfection efficiency, and GFP expression were obtained when the PEI/DNA ratio was 5:1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akinc A, Thomas M, Klibanov AM, Langer R (2005) Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 7:657–663

    Article  CAS  Google Scholar 

  • Backliwal G, Hildinger M, Hasija V, Wurm FM (2008) High-density transfection with HEK-293 cells allows doubling of transient titers and removes need for a priori DNA complex formation with PEI. Biotechnol Bioeng 99:721–727

    Article  CAS  Google Scholar 

  • Baker A, Cotten M (1997) Delivery of bacterial artificial chromosomes into mammalian cells with psoralen-inactivated adenovirus carrier. Nucleic Acids Res 25:1950–1956

    Article  CAS  Google Scholar 

  • Baker A, Saltik M, Lehrmann H, Killisch I, Mautner V, Lamm G, Christofori G, Cotten M (1997) Polyethylenimine (PEI) is a simple, inexpensive and effective reagent for condensing and linking plasmid DNA to adenovirus for gene delivery. Gene Ther 4:773

    Article  CAS  Google Scholar 

  • Baldi L, Hacker DL, Adam M, Wurm FM (2007) Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol Lett 29:677–684

    Article  CAS  Google Scholar 

  • Behr JP (1997) The proton sponge: a trick to enter cells the viruses did not exploit. CHIMIA Int J Chem 51:34–36

    CAS  Google Scholar 

  • Bertschinger M, Backliwal G, Schertenleib A, Jordan M, Hacker DL, Wurm FM (2006) Disassembly of polyethylenimine-DNA particles in vitro: Implications for polyethylenimine-mediated DNA delivery. J Controlled Release 116:96–104

    Article  CAS  Google Scholar 

  • Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Nat Acad Sci 92:7297–7301

    Article  CAS  Google Scholar 

  • Coll JL, Chollet P, Brambilla E, Desplanques D, Behr JP, Favrot M (1999) In vivo delivery to tumors of DNA complexed with linear polyethylenimine. Hum Gene Ther 10:1659–1666

    Article  CAS  Google Scholar 

  • Davis T, Wickham T, McKenna K, Granados R, Shuler M, Wood H (1993) Comparative recombinant protein production of eight insect cell lines. In Vitro Cell Dev Biol Anim 29:388–390

    Article  Google Scholar 

  • Derouazi M, Girard P, Van Tilborgh F, Iglesias K, Muller N, Bertschinger M, Wurm FM (2004) Serum-free large-scale transient transfection of CHO cells. Biotechnol Bioeng 87:537–545

    Article  CAS  Google Scholar 

  • Dunlap DD, Maggi A, Soria MR, Monaco L (1997) Nanoscopic structure of DNA condensed for gene delivery. Nucleic Acids Res 25:3095

    Article  CAS  Google Scholar 

  • Fischer D, Bieber T, Li Y, Elsässer HP, Kissel T (1999) A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res 16:1273–1279

    Article  CAS  Google Scholar 

  • Girard P, Derouazi M, Baumgartner G, Bourgeois M, Jordan M, Jacko B, Wurm FM (2002) 100-liter transient transfection. Cytotechnology 38:15–21

    Article  CAS  Google Scholar 

  • Godbey W, Wu KK, Mikos AG (1999) Poly (ethylenimine) and its role in gene delivery. J Controlled Release 60:149–160

    Article  CAS  Google Scholar 

  • Han X, Sun L, Fang Q, Li D, Gong X, Wu Y, Yang S, Shen BQ (2007) Transient expression of osteopontin in HEK 293 cells in serum-free culture. Enzyme Microb Technol 41:133–140

    Article  CAS  Google Scholar 

  • Han X, Fang Q, Yao F, Wang X, Wang J, Yang S, Shen BQ (2009) The heterogeneous nature of polyethylenimine-DNA complex formation affects transient gene expression. Cytotechnology 60:63–75

    Article  CAS  Google Scholar 

  • Hanzlíková M, Ruponen M, Galli E, Raasmaja A, Aseyev V, Tenhu H, Urtti A, Yliperttula M (2011) Mechanisms of polyethylenimine-mediated DNA delivery: free carrier helps to overcome the barrier of cell-surface glycosaminoglycans. J Gene Med 13:402–409

    Article  Google Scholar 

  • Jordan M, Schallhorn A, Wurm FM (1996) Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res 24:596–601

    Article  CAS  Google Scholar 

  • Kichler A, Leborgne C, Coeytaux E, Danos O (2001) Polyethylenimine-mediated gene delivery: a mechanistic study. J Gene Med 3:135–144

    Article  CAS  Google Scholar 

  • Kircheis R, Wightman L, Wagner E (2001) Design and gene delivery activity of modified polyethylenimines. Adv Drug Deliv Rev 53:341–358

    Article  CAS  Google Scholar 

  • Maeda T, Kusakabe T, Man Lee J, Miyagawa Y, Koga K, Kawaguchi Y (2005) Efficient nonviral gene transfer mediated by polyethylenimine in an insect cell line. J Insect Biotechnol Sericol 74:21–26

    CAS  Google Scholar 

  • Meunier-Durmort C, Grimal H, Sachs L, Demeneix B, Forest C (1997) Adenovirus enhancement of polyethylenimine-mediated transfer of regulated genes in differentiated cells. Gene Ther 4:808

    Article  CAS  Google Scholar 

  • Minagawa K, Matsuzawa Y, Yoshikawa K, Matsumoto M, Doi M (1991) Direct observation of the biphasic conformational change of DNA induced by cationic polymers. FEBS Lett 295:67–69

    Article  CAS  Google Scholar 

  • Remy JS, Abdallah B, Zanta MA, Boussif O, Behr JP, Demeneix B (1998) Gene transfer with lipospermines and polyethylenimines. Adv Drug Deliv Rev 30:85–95

    Article  CAS  Google Scholar 

  • Schlaeger EJ, Christensen K (1999) Transient gene expression in mammalian cells grown in serum-free suspension culture. Cytotechnology 30:71–83

    Article  CAS  Google Scholar 

  • Tang M, Szoka F (1997) The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther 4:823

    Article  CAS  Google Scholar 

  • Wurm F, Bernard A (1999) Large-scale transient expression in mammalian cells for recombinant protein production. Curr Opin Biotechnol 10:156–159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Guangdong Provincial project for cooperation of industry and academy (2010B090400500) and Major national science and technology project for New medicine research (2012ZX09202-301-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuling Xie.

Additional information

Xie Qiuling and Guo Xinyong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Q., Xinyong, G., Xianjin, C. et al. PEI/DNA formation affects transient gene expression in suspension Chinese hamster ovary cells via a one-step transfection process. Cytotechnology 65, 263–271 (2013). https://doi.org/10.1007/s10616-012-9483-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-012-9483-9

Keywords

Navigation