Skip to main content
Log in

Suppressive effects of electrolyzed reduced water on alloxan-induced apoptosis and type 1 diabetes mellitus

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Electrolyzed reduced water, which is capable of scavenging reactive oxygen species, is attracting recent attention because it has shown improved efficacy against several types of diseases including diabetes mellitus. Alloxan produces reactive oxygen species and causes type 1 diabetes mellitus in experimental animals by irreversible oxidative damage to insulin-producing β-cells. Here, we showed that electrolyzed reduced water prevented alloxan-induced DNA fragmentation and the production of cells in sub-G1 phase in HIT-T15 pancreatic β-cells. Blood glucose levels in alloxan-induced type 1 diabetes model mice were also significantly suppressed by feeding the mice with electrolyzed reduced water. These results suggest that electrolyzed reduced water can prevent apoptosis of pancreatic β-cells and the development of symptoms in type 1 diabetes model mice by alleviating the alloxan-derived generation of reactive oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALX:

Alloxan

BSA:

Bovine serum albumin

EDTA:

Ethylenediaminetetraacetic acid

ERW:

Electrolyzed reduced water

FBS:

Fetal bovine serum

DM:

Diabetes mellitus

HBSS:

Hank’s balanced salt solution

HEPES:

4-[2-hydroxyethyl]-1-piperazineethane-sulfonic acid

PBS:

Phosphate buffered saline

PI:

Propidium iodide

ROS:

Reactive oxygen species

T1DM:

Type 1 diabetes mellitus

T2DM:

Type 2 diabetes mellitus

TdT:

Terminal deoxynucleotidyl transferase

References

  • Aiken JD III, Finke RG (1999) A review of modern transition-metal nanoclusters: their synthesis, characterization, and application in catalysis. J Mol Catal A Chem 145:1–44

    Article  CAS  Google Scholar 

  • Bernstein C, Bernstein H, Payne CM, Garewal H (2002) DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 511:145–178

    Article  CAS  Google Scholar 

  • Bresson D, Von Herrath M (2007) Moving towards efficient therapies in type 1 diabetes: to combine or not to combine? Autoimmun Rev 6:315–322

    Article  CAS  Google Scholar 

  • Brömme HJ, Weinandy R, Peschke E (2005) Influence of oxygen concentration on redox cycling of alloxan and dialuric acid. Horm Metab Res 37:729–733

    Article  Google Scholar 

  • Cnop M, Welsh N, Jonas J-C, Jörns A, Lenzen S, Eizirik DL (2005) Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54:97–107

    Article  Google Scholar 

  • Curtin JF, Donovan M, Cotter TG (2002) Regulation and measurement of oxidative stress in apoptosis. J Immunol Methods 265:49–72

    Article  CAS  Google Scholar 

  • Eizirik DL, Darville MI (2001) β-cell apoptosis and defense mechanisms. Lessons from type 1 diabetes. Diabetes 50:S64–S69

    Article  CAS  Google Scholar 

  • El-Alfy AT, Ahmed AAE, Fatani AJ (2005) Protective effect of red grape seeds proanthocyanidins against induction of diabetes by alloxan in rats. Pharmacol Res 52:264–270

    Article  CAS  Google Scholar 

  • Elsner M, Tiedge M, Guldbakke B, Munday R, Lenzen S (2002) Importance of the GLUT2 glucose transporter for pancreatic beta cell toxicity of alloxan. Diabetologia 45:1542–1549

    Article  CAS  Google Scholar 

  • Elsner M, Gurgul-Convey E, Lenzen S (2006) Relative importance of cellular uptake and reactive oxygen species for the toxicity of alloxan and dialuric acid to insulin-producing cells. Free Radic Biol Med 41:825–834

    Article  CAS  Google Scholar 

  • Fukuda K, Asoh S, Ishikawa M, Yamamoto Y, Ohsawa I, Ohta S (2007) Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochem Biophys Res Commun 361:670–674

    Article  CAS  Google Scholar 

  • Gai W, Schott-Ohly P, Schulte im Walde S, Gleichmann H (2004) Differential target molecules for toxicity induced by streptozotocin and alloxan in pancreatic islets of mice in vitro. Exp Clin Endocrinol Diabetes 112:29–37

    Article  CAS  Google Scholar 

  • Gurgul E, Lortz S, Tiedge M, Jörns A, Lenzen S (2004) Mitochondrial catalase overexpression protects insulin-producing cells against toxicity of reactive oxygen species and proinflammatory cytokines. Diabetes 53:2271–2280

    Article  CAS  Google Scholar 

  • Hamasaki T, Kashiwagi T, Imada T, Nakamichi N, Aramaki S, Toh K, Morisawa S, Shimakoshi H, Hisaeda Y, Shirahata S (2008) Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles. Langmuir 24:7354–7364

    Article  CAS  Google Scholar 

  • Hayashida K, Sano M, Ohsawa I, Shinmura K, Tamaki K, Kimura K, Endo J, Katayama T, Kawamura A, Kohsaka S, Makino S, Ohta S, Ogawa S, Fukuda K (2007) Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun 373:30–35

    Article  Google Scholar 

  • Jörns A, Günther A, Hedrich H-J, Wedekind D, Tiedge M, Lenzen S (2005) Immune cell infiltration, cytokine expression, and β-cell apoptosis during the development of type 1 diabetes in the spontaneously diabetic LEW.1AR1/Ztm- iddm rat. Diabetes 54:2041–2052

    Article  Google Scholar 

  • Kajita M, Hikosaka K, Iitsuka M, Kanayama A, Toshima N, Miyamoto Y (2007) Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radical Res 41:615–626

    Article  CAS  Google Scholar 

  • Kaneto H, Fujii J, Myint T, Miyazawa N, Islam KN, Kawasaki Y, Suzuki K, Nakamura M, Tatsumi H, Yamasaki Y, Taniguchi N (1996) Reducing sugars trigger oxidative modification and apoptosis in pancreatic β-cells by provoking oxidative stress through the glycation reaction. Biochem J 320:855–863

    CAS  Google Scholar 

  • Kay TW, Thomas HE, Harrison LC, Allison J (2000) The beta cell in autoimmune diabetes: many mechanisms and pathways of loss. Trends Endocrinol Metab 11:11–15

    Article  CAS  Google Scholar 

  • Kim M-J, Kim HK (2006) Anti-diabetic effects of electrolyzed reduced water in streptozotocin-induced and genetic diabetic mice. Life Sci 79:2288–2292

    Article  CAS  Google Scholar 

  • Kim J, Takahashi M, Shimizu T, Shirasawa T, Kajita M, Kanayama A, Miyamoto Y (2008) Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans. Mech Ageing Dev 129:322–331

    Article  CAS  Google Scholar 

  • Klöppel G, Clemens A (1997) Insulin-dependent diabetes mellitus: islet changes in relation to etiology and pathogenesis. Endocr Pathol 8:273–282

    Article  Google Scholar 

  • Kuzuya T, Nakagawa S, Satoh J, Kanazawa Y, Iwamoto Y, Kobayashi M, Nanjo K, Sasaki A, Seino Y, Ito C, Shima K, Nonaka K, Kadowaki T (2002) Report of the Committee on the classification and diagnostic criteria of diabetes mellitus. Diabetes Res Clin Pract 55:65–85

    Article  Google Scholar 

  • Lenzen S, Munday R (1991) Thiol-group reactivity, hydrophilicity and stability of alloxan, its reduction products and its n-methyl derivatives and a comparison with ninhydrin. Biochem Pharmacol 42:1385–1391

    Article  CAS  Google Scholar 

  • Lenzen S, Drinkgern J, Tiedge M (1996) Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 20:463–466

    Article  CAS  Google Scholar 

  • Li YP, Nishimura T, Teruya K, Maki T, Komatsu T, Hamasaki T, Kashiwagi T, Kabayama S, Shim SY, Katakura Y, Osada K, Kawahara T, Otsubo K, Morisawa S, Ishii Y, Gadek Z, Shirahata S (2002) Protective mechanism of reduced water against alloxan-induced pancreatic β-cell damage: scavenging effect against reactive oxygen species. Cytotechnology 40:139–149

    Article  CAS  Google Scholar 

  • Lortz S, Tiedge M (2003) Importance of mitochondrial superoxide dismutase expression in insulin-producing cells for the toxicity of reactive oxygen species and proinflammatory cytokines. Free Radic Biol Med 34:683–688

    Article  CAS  Google Scholar 

  • Lortz S, Gurgul-Convey E, Lenzen S, Tiedge M (2005) Importance of mitochondrial superoxide dismutase expression in insulin-producing cells for the toxicity of reactive oxygen species and proinflammatory cytokines. Diabetologia 48:1541–1548

    Article  CAS  Google Scholar 

  • Nathan DM (2007) Finding new treatments for diabetes—how many, how fast…how good? N Engl J Med 356:437–440

    Article  CAS  Google Scholar 

  • Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279

    Article  CAS  Google Scholar 

  • Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471

    Article  CAS  Google Scholar 

  • Oda M, Kusumoto K, Teruya K, Hara T, Maki S, Kabayama S, Katakura Y, Otsubo K, Morisawa S, Hayashi H, Ishii Y, Shirahata S (1999) Electrolyzed and natural reduced water exhibit insulin-like activity on glucose uptake into muscle cells and adipocytes. In: Bernard A, Griffiths B, Noe W, Wurm F (eds) Animal cell technology: products from cells, Cells as Products. Kluwer Academic Publishers, The Netherlands, pp 425–427

    Google Scholar 

  • Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S (2006) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nature Med 13:688–694

    Google Scholar 

  • Pennathur S, Heinecke JW (2007) Mechanisms for oxidative stress in diabetic cardiovascular disease. Antioxid Redox Signal 9:955–969

    Article  CAS  Google Scholar 

  • Sakurai K, Katoh M, Someno K, Fujimoto Y (2001) Apoptosis and mitochondrial damage in INS-1 cells treated with alloxan. Biol Pharm Bull 24:876–882

    Article  CAS  Google Scholar 

  • Sakurai K, Nabeyama A, Fujimoto Y (2006) Ascorbate-mediated iron release from ferritin in the presence of alloxan. Biometals 19:323–333

    Article  CAS  Google Scholar 

  • Schulte im Walde S, Dohle C, Schott-Ohly P, Gleichmann H (2002) Molecular target structures in alloxan-induced diabetes in mice. Life Sci 71:1681–1694

    Article  CAS  Google Scholar 

  • Shirahata S (2002) Reduced water for prevention of diseases. In: Shirahata S, Teruya K, Katakura Y (eds) Animal cell technology: basic & applied aspects, vol 12. Kluwer Academic Publishers, The Netherlands, pp 25–30

    Google Scholar 

  • Shirahata S (2004) Reduced water. In: The characteristic and advanced technology of water—for agriculture, foods, and medicines (in Japanese). N.T.S., Tokyo, pp. 33–45

  • Shirahata S, Kabayama S, Nakano M, Miura T, Kusumoto K, Gotoh M, Hayashi H, Otsubo K, Morisawa S, Katakura Y (1997) Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage. Biochem Biophys Res Commun 234:269–274

    Article  CAS  Google Scholar 

  • Sigfrid LA, Cunningham JM, Beeharry N, Borg LAH, Hernandez ALR, Carlsson C, Bone AJ, Green IC (2004) Antioxidant enzyme activity and mRNA expression in the islets of Langerhans from the BB/S rat model of type 1 diabetes and an insulin-producing cell line. J Mol Med 82:325–335

    Article  CAS  Google Scholar 

  • Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in β-cells of the rat pancreas. Physiol Res 50:536–546

    Google Scholar 

  • Takasu N, Asawa T, Komiya I, Nagasawa Y, Yamada T (1991) Alloxan-induced DNA strand breaks in pancreatic islets. J Biol Chem 266:2112–2114

    CAS  Google Scholar 

  • Toniolo A, Onodera T, Yoon J-W, Notkins AL (1980) Induction of diabetes by cumulative environmental insults from viruses and chemicals. Nature 288:383–385

    Article  CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncola J, Cronin MTD, Mazura M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  Google Scholar 

  • Washburn MP, Wells WW (1997) Glutathione dependent reduction of alloxan to dialuric acid catalyzed by thioltransferase (glutaredoxin): a possible role for thioltransferase in alloxane toxicity. Free Radic Biol Med 23:563–570

    Article  CAS  Google Scholar 

  • Watzky MA, Finke RG (1997) Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth. J Am Chem Soc 119:10382–10400

    Article  CAS  Google Scholar 

  • Winterbourn CC, Munday R (1989) Glutathione-mediated redox cycling of alloxan. Biochem Pharmacol 38:271–2771

    Article  CAS  Google Scholar 

  • Yan H, Tian H, Kinjo T, Hamasaki T, Tomimatsu K, Nakamichi N, Teruya K, Kabayama S, Shirahata S (2010) Extension of the lifespan of Caenorhabditis elegans by the use of electrolyzed reduced water. Biosci Biotech Biochem 74:2011–2015

    Google Scholar 

  • Yaturu S, Bryant B, Jain SK (2007) Thiazolidinedione treatment decreases bone mineral density in type 2 diabetic men. Diabetes Care 30:1574–1576

    Article  CAS  Google Scholar 

  • Ye J, Li Y, Hamasaki T, Nakamichi N, Komatsu T, Kashiwagi T, Teruya K, Nishikawa R, Kawahara T, Osada K, Toh K, Abe M, Tian H, Kabayama S, Otsubo K, Morisawa S, Katakura Y, Shirahata S (2008) Inhibitory effect of electrolyzed reduced water on tumor angiogenesis. Biol Pharm Bull 31:19–26

    Article  CAS  Google Scholar 

  • Zhang H, Ollinger K, Brunk U (1995) Insulinoma cells in culture show pronounced sensitivity to alloxan-induced oxidative stress. Diabetologia 38:635–641

    Article  CAS  Google Scholar 

  • Zhang H-N, Hea J-H, Yuanb L, Lin Z-B (2003) In vitro and in vivo protective effect of Ganoderma lucidum polysaccharides on alloxan-induced pancreatic islets damage. Life Sci 73:2307–2319

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Yuki Higuchi for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanetaka Shirahata.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 246 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Hamasaki, T., Nakamichi, N. et al. Suppressive effects of electrolyzed reduced water on alloxan-induced apoptosis and type 1 diabetes mellitus. Cytotechnology 63, 119–131 (2011). https://doi.org/10.1007/s10616-010-9317-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-010-9317-6

Keywords

Navigation