Skip to main content
Log in

Cell death in mammalian cell culture: molecular mechanisms and cell line engineering strategies

  • Review
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Cell death is a fundamentally important problem in cell lines used by the biopharmaceutical industry. Environmental stress, which can result from nutrient depletion, by-product accumulation and chemical agents, activates through signalling cascades regulators that promote death. The best known key regulators of death process are the Bcl-2 family proteins which constitute a critical intracellular checkpoint of apoptosis cell death within a common death pathway. Engineering of several members of the anti-apoptosis Bcl-2 family genes in several cell types has extended the knowledge of their molecular function and interaction with other proteins, and their regulation of cell death. In this review, we describe the various modes of cell death and their death pathways at molecular and organelle level and discuss the relevance of the growing knowledge of anti-apoptotic engineering strategies to inhibit cell death and increase productivity in mammalian cell culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A1:

Apolipoprotein

AIF:

Apoptosis-inducing factors

ANT:

Adenine nucleotide translocator

Akt:

Protein kinase B

Atgs:

Autophagy-related proteins

Aven:

Apoptosis, caspase activation inhibitor

Apaf1:

Apoptotic protease activation factor 1

Ap1:

Jun oncogene

Bad:

Bcl-2-associated agonist of cell death

Bak:

Bcl-2-antagonist/killer 1

Bax:

Bcl-2-associated X protein

Bcl-2:

B-cell lymphoma

Bcl-xL:

Bcl-2 related gene, long isoform

Bid:

BH3 interacting domain death agonist

Bim:

Bcl-2-like 11

Bok:

Bcl-2-related ovarian killer

c-MYC:

v-myc myelocytomatosis viral oncogene homolog

Creb:

AMP responsive element binding protein 1

ER:

Endoplasmic reticulum

E2F4:

Eukaryotic transcription factor 4

E2F1:

Eukaryotic transcription factor 1

FADD:

Fas-associated death domain

FasL:

Fas ligand

Mcl-1:

Myeloid cell leukemia sequence 1 (Bcl2-related)

mTOR:

Target of rapamycin

MOMP:

Mitochondrial outer membrane permeabilization

Noxa:

PMA-induced protein

NUR77:

Nuclear receptor subfamily 4

PI3K:

Phosphoinositide 3-kinase

PKB:

Protein kinase B

PT:

Permeability transition pores

PUMA:

p53-upregulated modulator of apoptosis

p27:

Cyclin dependent kinase inhibitor protein 1B

SMAC/DIABLO:

Second mitochondria-derived activator of caspases/direct IAP-bind protein with low pI

TNF:

Tumour necrosis factor

TRAIL:

TNF-related apoptosis-inducing ligand

VDAC:

Voltage dependent anion channel

UPR:

Unfolded protein response

References

  • Al-Rubeai M, Singh RP (1998) Apoptosis in cell culture. Curr Opin Biotechnol 9:152–156

    Article  CAS  Google Scholar 

  • Al-Rubeai M, Mills D, Emery AN (1990) Electron microscopy of hybridoma cells with special regard to monoclonal antibody production. Cytotechnology 4:13–28

    Article  CAS  Google Scholar 

  • Al-Rubeai M, Emery AN, Chalder S, Jan DC (1992) Specific monoclonal antibody productivity and the cell cycle-comparisons of batch, continuous and perfusion cultures. Cytotech 9:85–97

    Article  CAS  Google Scholar 

  • Al-Rubeai M, Singh RP, Goldman MH, Emery AN (1995a) The death mechanism of animal cells in conditions of intensive agitation. Biotechnol Bioeng 45:463–472

    Article  CAS  Google Scholar 

  • Al-Rubeai, Singh R, Emery AN (1995b) The transfection of mammalian cells with the anti-apoptotic bcl-2 gene can enhance survivability and reduce the need for essential amino acids and nutrients. AIChE meeting, Miami, Nov, 12–17

  • Arden N, Majors BS, Ahn SH, Oyler G, Betenbaugh M (2006) Inhibiting the apoptosis pathway using MDM2 in mammalian cell cultures. Biotechnol Bioeng 97:601–614

    Article  CAS  Google Scholar 

  • Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  CAS  Google Scholar 

  • Astley K, Al-Rubeai M (2008) The role of Bcl-2 and its combined effect with p21CIP1 in adaptation of CHO cells to suspension and protein-free culture. Appl Microbiol Biotechnol 78:391–399

    Article  CAS  Google Scholar 

  • Bierau H, Perani A, Al-Rubeai M, Emery AN (1998) A comparison of intensive cell culture bioreactors operating with hybridomas modified for inhibited apoptotic response. J Biotech 62:195–207

    Article  CAS  Google Scholar 

  • Cheng EHYA, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ (2001) Bcl-2, Bcl-xL sequester BH3 domain-only molecules preventing Bax- and Bak-mediated mitochondrial apoptosis. Mol Cell 8:705–711

    Article  CAS  Google Scholar 

  • Chiang GG, Sisk WP (2005) Bcl-xL mediates increased production of humanized monoclonal antibodies in Chinese haster ovary cells. Biotechnol Bioeng 91:779–792

    Article  CAS  Google Scholar 

  • Chipuk JE, Green DR (2008) How do Bcl-2 proteins induce mitochondrial outer membrane permeabilization? Trend Cell Biol 18:157–164

    Article  CAS  Google Scholar 

  • Chisti Y (2000) Animal-cell damage in sparged bioreactors. Trends Biotechnol 18:420–432

    Article  CAS  Google Scholar 

  • Cohen JJ, Al-Rubeai M (1995) Apoptosis-targeted therapies: the ‘next big thing’ in biotechnology? Trends Biotechnol 13:281–283

    Article  CAS  Google Scholar 

  • Cory S, Adams JM (2002) The Bcl-2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  CAS  Google Scholar 

  • Cost GJ, Freyvert Y, Vafiadis A, Santiago Y, Miller JC, Rebar E, Collingwood TN, Snowden A, Gregory PD (2009) Bak and Bax deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells. Biotechnol Bioeng 105:330–340

    Article  CAS  Google Scholar 

  • Cotter TG, Al-Rubeai M (1995) Cell death (apoptosis) in cell culture systems. Trends Biotechnol 13:150–155

    Article  CAS  Google Scholar 

  • Crea F, Sarti D, Falciani F, Al-Rubeai M (2006) Over-expression of hTERT in CHO K1 results in decreased apoptosis and reduced serum dependency. J Biotech 121:109–123

    Article  CAS  Google Scholar 

  • Cummings MC, Winterford CM, Walker NI (1997) Apoptosis. Am J Surg Pathol 21:88–101

    Article  CAS  Google Scholar 

  • Danial NN, Gramm CF, Scorrano L, Zhang CY, Krauss S, Ranger AM, Datta SR, Greenberg ME, Licklider LJ, Lowell BB, Gygi SP, Korsmeyer SJ (2003) Bad and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424:952–956

    Article  CAS  Google Scholar 

  • Degterev A, Boyce M, Yuan JY (2003) A decade of caspases. Oncogene 22:8543–8567

    Article  CAS  Google Scholar 

  • Deng XM, Gao FQ, May WS (2003) Bcl-2 retards G1/S cell cycle transition by regulating intracellular ROS. Blood 102:3179–3185

    Article  CAS  Google Scholar 

  • Ding WX, Yin XM (2008) Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy 16:141–150

    Google Scholar 

  • Enis DR, Dunmore B, Johnson N, Pober JS, Print CG (2008) Anti-apoptotic activities of Bcl-2 correlate with vascular maturation and transcriptional modulation of human endothelial cells. Endothelium J Endothelial Cell Res 15:59–71

    Article  CAS  Google Scholar 

  • Fassnacht D, Rossing S, Franek F, Al-Rubeai M, Portner R (1998) Effect of Bcl-2 expression on hybridoma cell growth in serum-supplemented, protein free and diluted media. Cytotech 26:219–225

    Article  CAS  Google Scholar 

  • Figueroa B Jr, Chen S, Oyler G, Hardwick JM, Betenbaugh MJ (2004) Aven and Bcl-xL enhance protection against apoptosis for mammalian cells exposed to various culture conditions. Biotechnol Bioeng 6:589–600

    Article  CAS  Google Scholar 

  • Figueroa B Jr, Ailor E, Osborne D, Hardwick JM, Reff M, Betenbaugh MJ (2007) Enhanced cell culture performance using inducible anti-apoptotic genes E1B–19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells. Biotechnol Bioeng 97:877–892

    Article  CAS  Google Scholar 

  • Gammel P (2007) MicroRNA: recently discovered key regulators of proliferation and apoptosis in animal cells. Cytotechnology 53:55–63

    Article  CAS  Google Scholar 

  • Gonzuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891–2906

    Article  CAS  Google Scholar 

  • Goswami J, Sinskey AJ, Stelle H, Stephanopoulos GN, Wang DIC (1999) Apoptosis in batch cultures of Chinese hamster ovary cells. Biotechnol Bioeng 62:632–640

    Article  CAS  Google Scholar 

  • Greider C, Chattopadhyay A, Parkhurst C, Yang E (2002) Bcl-xL and Bcl-2 delay Myc-induced cell cycle entry through elevation of p27 and inhibition of G1 cyclin-dependent kinases. Oncogene 21:7765–7775

    Article  CAS  Google Scholar 

  • Hanson CJ, Bootman MD, Distelhorst CW, Maraldi T, Roderick HL (2008) The cellular concentration of Bcl-2 determines its pro- or anti-apoptotic effect. Cell Calcium 44:243–258

    Article  CAS  Google Scholar 

  • Heath-Engel HM, Chang NC, Shore GC (2008) The endoplasmic reticulum in apoptosis and autophagy: role of the Bcl-2 protein family. Oncogene 27:6419–6433

    Article  CAS  Google Scholar 

  • Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251

    Article  CAS  Google Scholar 

  • Hwang SO, Lee GM (2008) Nutrient deprivation induces autophagy as well as apoptosis in Chinese hamster ovary cell culture. Biotechnol Bioeng 99:678–685

    Article  CAS  Google Scholar 

  • Hwang SO, Lee GM (2009) Effect of Akt overexpression on programmed cell death in antibody-producing Chinese hamster ovary cells. J Biotech 139:89–94

    Article  CAS  Google Scholar 

  • Ifandi V, Al-Rubeai M (2005) Regulation of cell proliferation and apoptosis in CHO-K1 cells by the coexpression of c-Myc and Bcl-2. Biotech Prog 21:671–677

    Article  CAS  Google Scholar 

  • Imahashi K, Schneider MD, Steenbergen C, Murphy E (2003) Transgenic expression of Bcl-2 modulates energy metabolism and prevents cytosolic acidification during ischemia and reduces ischemia-reperfusion injury. Circulation 95:734–741

    Google Scholar 

  • Ishaque A, Al-Rubeai M (1999) Role of Ca, Mg and K ions in determining apoptosis and extent of suppression afforded by bcl-2 during hybridoma cell culture. Apoptosis 5:335–355

    Article  Google Scholar 

  • Ishaque A, Al-Rubeai M (2002) Role of vitamins in determining apoptosis and extent of suppression by bcl-2 during hybridoma cell culture. Apoptosis 7:231–239

    Article  CAS  Google Scholar 

  • Ishaque A, Thrift J, Murphy J, Konstantinov K (2007) Over-expression of Hsp70 in BHK-21 cells engineered to produce recombinant Factor VIII promotes resistance to apoptosis and enhances secretion. Biotechnol Bioeng 81:496–504

    Google Scholar 

  • Itoh Y, Ueda H, Suzuki E (1995) Overexpression of Bcl-2, apoptosis suppressing gene: prolonged viable culture period of hybridoma and enhanced antibody production. Biotechnol Bioeng 48:118–122

    Article  CAS  Google Scholar 

  • Janumyam YM, Sansam CG, Chattopadhyay A, Cheng NL, Soucie EL, Penn LZ, Andrews D, Knudson CM, Yang E (2003) Bcl-xL/Bcl-2 co-ordinately regulates apoptosis, cell cycle arrest and cell cycle entry. EMBO J 22:5459–5470

    Article  Google Scholar 

  • Jayapal KP, Wlaschin KF, Hu WS, Yap M (2006) Recombinant protein therapeutics from CHO cells—20 years and counting. CHO Consortium. SBE Special Section. Ref Type: report

  • Jin ZY, El Deiry WS (2005) Overview of cell death signalling pathways. Cancer Biol Ther 4:139–163

    Article  CAS  Google Scholar 

  • Juanola S, Vives J, Milian E, Prats E, Cairo JJ, Godia F (2009) Expression of Bhrf1 improves survival of murine hybridoma cultures in batch and continuous. Appl Microbiol Biotechnol 83:43–57

    Article  CAS  Google Scholar 

  • Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissure kinetics. Br J Cancer 26:239

    CAS  Google Scholar 

  • Kim NS, Lee GM (2002) Response at recombinant Chinese hamster ovary cells to hyperosmotic pressure:effect of Bcl-2 overexpression. J Biotech 95:237–248

    Article  CAS  Google Scholar 

  • Kim YG, Lee GM (2009) Bcl-xL overexpression does not enhance specific erythropoietin productivity of recombinant CHO cells grown at 33C and 37C. Biotech Prog 25:252–256

    Article  CAS  Google Scholar 

  • Kim YG, Kim JY, Mohan C, Lee GM (2009) Effect of Bcl-xL over-expression on apoptosis and autophagy in recombinant chinese hamster ovary cells under nutrient deprived condition. Biotechnol Bioeng 4:757–766

    Article  CAS  Google Scholar 

  • Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8:931–937

    Article  CAS  Google Scholar 

  • Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC (1993) Investigation of the subcellular-distribution of the Bcl-2 oncoprotein—residence in the nuclear-envelope, endoplasmic-reticulum, and outer mitochondrial-membranes. Cancer Res 53:4701–4714

    CAS  Google Scholar 

  • Krampe B, Al-Rubeai M (2009) Cellular and molecular analysis of NS0 cell line in batch, chemostat and perfusion cultures. PhD Thesis, University College Dublin, Ireland

  • Ku B, Woo JS, Lian C, Lee KH, Hong HS, Xiaoefei E, Kim KS, Jung JU, Oh BH (2008) Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral bcl-2 of murine y-herpesvirus 68. PLoS Pathog 4:e25

    Article  CAS  Google Scholar 

  • Kuystermans D, Krampe B, Swiderek H, Al-Rubeai M (2007) Using cell engineering and omic tools for the improvement of cell culture processes. Cytotech 53:3–22

    Article  Google Scholar 

  • Lam M, Dubyak G, Chen L, Nunez G, Miesfeld RL, Distelhorst CW (1994) Evidence that Bcl-2 represses apoptosis by regulating endoplasmic Reticulum-Associated Ca2+ Fluxes. Proc Natl Acad Sci USA 91:6569–6573

    Article  CAS  Google Scholar 

  • Lasunskaia EB, Fridlianskaia II, Darieva ZA, Da Silva MS, Kanashiro MM, Margulis BA (2003) Transfection of NS0 myeloma fusion partner cells with HSP70 gene results in higher hybridoma yield by improving cellular resistance to apoptosis. Biotech Bioeng 8:496–504

    Article  CAS  Google Scholar 

  • Lee YY, Wong KTK, Tan J, Toh PC, Mao Y, Brusic V, Yap MGS (2009) Overexpression of heat shock proteins (HSPs) in CHO cells for extended culture viability and improved recombinant protein production. J Biotech 143:34–43

    Article  CAS  Google Scholar 

  • Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P (1997) Intracellular adenosine triphosphate (ATP) concentrations: a switch in the decision between apoptosis and necrosis. J Exp Med 185:1481–1486

    Article  CAS  Google Scholar 

  • Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    Article  CAS  Google Scholar 

  • Levine B, Sinha S, Kroemer G (2008) Blc-2 family members: dual regulators of apoptosis and autophagy. Autophagy 4:600–606

    CAS  Google Scholar 

  • Lim SF, Chuan KH, Liu S, Loh SOH, Chung BYF, Ong CC, Song ZW (2006) RNAi suppression of Bax and Bak enhances viability in fed-batch cultures of CHO cells. Metab Eng 8:509–522

    Article  CAS  Google Scholar 

  • Lin BZ, Kolluri SK, Lin F, Liu W, Han YH, Cao XH, Dawson MI, Reed JC, Zhang XK (2004) Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 116:527–540

    Article  CAS  Google Scholar 

  • Majid FAA, Butler M, Al-Rubeai M (2007) Glycosylation of an immunoglobulin produced from a murine hybridoma cell line: the effect of culture mode and the anti-apoptotic gene, bcl-2. Biotechnol Bioeng 97:156–169

    Article  CAS  Google Scholar 

  • Major BS, Betenbaugh MJ (2009) Mcl-1 overexpression leads to higher viabilities and increased production of humanized monoclonal antibody in Chinese hamster ovary cells. Biotech Prog 25:1161–1168

    Article  Google Scholar 

  • Massaad CA, Portier BP, Taglialatela G (2004) Inhibition of transcription factor activity by nuclear compartment-associated Bcl-2. J Biol Chem 279:54470–54478

    Article  CAS  Google Scholar 

  • Mastrangelo AJ, Hardwick JM, Zou S, Betenbaugh MJ (2000) Part II. Overexpression of bcl-2 family members enhances survival of mammalian cells in response to various cultures insults. Biotechnol Bioeng 67:555–564

    Article  CAS  Google Scholar 

  • Mazel S, Burtrum D, Petrie HT (1996) Regulation of cell division cycle progression by bcl-2 expression: a potential mechanism for inhibition of programmed cell death. J Exp Med 183:2219–2226

    Article  CAS  Google Scholar 

  • Meents H, Enenkel B, Eppenberger HM, Werner RG, Fussenegger M (2002) Impact of coexpression and coamplification of sICAM and antiapoptosis determinants Bcl-2/Bcl-x(L) on productivity, cell survival, and mitochondria number in CHO-DG44 grown in suspension and serum-free media. Biotechnol Bioeng 80:706–716

    Article  CAS  Google Scholar 

  • Mercille S, Massie B (1994) Induction of apoptosis in nutrient-deprived cultures of hybridoma and myeloma cells. Biotechnol Bioeng 44:1140–1154

    Article  CAS  Google Scholar 

  • Mercille S, Massie B (1999) Apoptosis-resistant E1B-19K-expressing NS/0 myeloma cells exhibit increased viability and chimeric antibody productivity under perfusion culture conditions. Biotech Bioeng 63(5):529–593

    Article  CAS  Google Scholar 

  • Mercille S, Johnson M, Lanthier S, Kamen AA, Massie B (2000) Understanding factors that limit the productivity of suspension-based perfusion cultures operated at high medium renewal rates. Biotechnol Bioeng 67:435–450

    Article  CAS  Google Scholar 

  • Mohan C, Kim Y-G, Lee GM (2009) Apoptosis and autophagy cell engineering. Book Series Cell Line Development, Cell Engineering, vol 6. pp 195–216

  • Murphy E, Imahashi K, Steenbergen C (2005) Bcl-2 regulation of mitochondrial energetics. Trends Cardiovasc Med 15:283–290

    Article  CAS  Google Scholar 

  • Murray K, Ang CE, Gull K, Hickman JA, Dickson AJ (1996) NSO myeloma cell death: influence of bcl-2 overexpression. Biotechnol Bioeng 51:298–304

    Article  CAS  Google Scholar 

  • Ogata M, Hino SI, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, Shiosaka S, Hammarback JA, Urano F, Imaizumi K (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26:9220–9231

    Article  CAS  Google Scholar 

  • Pattingre S, Tassa A, Qu X, Garuti R, Liang X, Misushima N, Packer M, Schneider M, Levine B (2005) Apoptosis and autophagy after mitochondrial or endoplasmic reticulum photodamage. Cell 122:927–939

    Article  CAS  Google Scholar 

  • Perani A, Singh RP, Chauhan R, Al-Rubeai M (1998) Variable functions of Bcl-2 in mediating bioreactor stress-induced apoptosis in hybridoma cells. Cytotech 28:177–188

    Article  CAS  Google Scholar 

  • Reggiori F, Klionsky DJ (2002) Autophagy in the eukariotic cell. Eukaryotic Cell 2:11–21

    Article  CAS  Google Scholar 

  • Remillard CV, Yuan JXJ (2004) Activation of K+ channels: an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol 286:L49–L67

    Article  CAS  Google Scholar 

  • Ryu JS, Lee GM (1999) Application of hypoosmolar medium to fed-batch culture of hybridoma cells for improvement of culture longevity. Biotechnol Bioeng 62:120–123

    Article  CAS  Google Scholar 

  • Sauerwald TM, Oyler GA, Betenbaugh MJ (2003) Study of caspase inhibitors for limiting death in mammalian cell culture. Biotechnol Bioeng 81:329–340

    Article  CAS  Google Scholar 

  • Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  CAS  Google Scholar 

  • Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487

    Article  CAS  Google Scholar 

  • Shimizu S, Ide T, Yanagida T, Tsujimoto Y (2000) Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J Biol Chem 275:12321–12325

    Article  CAS  Google Scholar 

  • Shimuzu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6:1221–1228

    Article  CAS  Google Scholar 

  • Simpson N, Milner AE, Al-Rubeai M (1997) Prevention of hybridoma cell death by bcl-2 during sub-optimal culture conditions. Biotechnol Bioeng 54:1–16

    Article  CAS  Google Scholar 

  • Simpson NH, Singh RP, Perani A, Goldenzon C, Al-Rubeai M (1998) In hybridoma cultures, deprivation of any single amino acid leads to apoptotic death, which is suppressed by the expression of the bcl-2 gene. Biotechnol Bioeng 59:90–98

    Article  CAS  Google Scholar 

  • Simpson NH, Singh RP, Emery AN, Al-Rubeai M (1999) Bcl-2 over-expression reduces growth rate and prolongs G1 phase in continuous chemostat cultures of hybridoma cells. Biotechnol Bioeng 64:174–186

    Article  CAS  Google Scholar 

  • Singh RP, Al-Rubeai M (1998) Apoptosis and bioprocess technology. Adv Biochem Eng Biotechnol 62:167–184

    CAS  Google Scholar 

  • Singh RP, Alrubeai M, Gregory CD, Emery AN (1994) Cell-death in bioreactors—a role for apoptosis. Biotechnol Bioeng 44:720–726

    Article  CAS  Google Scholar 

  • Singh RP, Emery AN, Al-Rubeai M (1996) Enhancement of survivability of mammalian cells by over-expression of the apoptosis-suppressor gene bcl-2. Biotech Bioeng 52:166–175

    Article  CAS  Google Scholar 

  • Sung YH, Hwang SJ, Lee GM (2005) Influence of down-regulation of caspase-3 by siRNAs on sodium butyrate-induced apoptotic cell death of Chinese hamster ovary cells producing thrombopoietin. Metab Eng 5–6:457–466

    Article  CAS  Google Scholar 

  • Terada S, Fukuoka K, Fujita T, Komatsu T, Takayaa S, Reed JC, Suzuki E (1997) Anti-apoptotic genes, bag-1 and bcl-2, enabled hybridoma cells to survive under treatment for arresting cell cycle. Cytotech 25:17–23

    Article  CAS  Google Scholar 

  • Tey BT, Al-Rubeai M (2005a) Effect of Bcl-2 over-expression on cell cycle and antibody productivity in chemostat cultures of myeloma NS0 cells. J Biosci Bioeng 100:303–310

    Article  CAS  Google Scholar 

  • Tey BT, Al-Rubeai M (2005b) Bcl-2 over-expression reduced the serum dependency and improved the nutrient metabolism in NS0 cell culture. Biotechnol Bioprocess Eng 10:254–261

    Article  CAS  Google Scholar 

  • Tey BT, Singh RP, Piredda L, Piacentini M, Al-Rubeai M (2000a) Bcl-2 mediated suppression of apoptosis in myeloma NS0 cultures. J Biotechnol 79:147–159

    Article  CAS  Google Scholar 

  • Tey BT, Singh RP, Piredda L, Piacentini M, Al-Rubeai M (2000b) Influence of bcl-2 on cell death during the cultivation of a Chinese hamster ovary cell line expressing a chimeric antibody. Biotechnol Bioeng 68:31–43

    Article  CAS  Google Scholar 

  • Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 25:169–174

    Article  Google Scholar 

  • Vairo G, Soos TJ, Upton TM, Zalvide J, DeCaprio JA, Ewen ME, Koff A, Adams JM (2000) Bcl-2 retards cell cycle entry through p27(Kip1), pRB relative p130, and altered E2F regulation. Mol Cell Biol 20:4745–4753

    Article  CAS  Google Scholar 

  • Vander Heiden MG, Chandel NS, Schumacker PT, Thompson CB (1999) Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol Cell 3:159–167

    Article  CAS  Google Scholar 

  • Vander Heiden MG, Chandel NS, Li XX, Schumacker PT, Colombini M, Thompson CB (2000) Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc Natl Acad Sci USA 97:4666–4671

    Article  CAS  Google Scholar 

  • Vaux DL, Cory S, Adams JM (1988) Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335:440–442

    Article  CAS  Google Scholar 

  • Walsh G (2006) Biopharmaceutical benchmarks 2006. Nat Biotechnol 24:769–776

    Article  CAS  Google Scholar 

  • Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE, Ierino H, Lee EF, Fairlie WD, Bouillet P, Strasser A, Kluck RM, Adams JM, Huang DCS (2007) Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315:856–859

    Article  CAS  Google Scholar 

  • Wong DCF, Wong KTK, Nissom PM, Heng CK, Yap MGS (2006) Targeting early apoptotic genes in batch and fed-batch CHO cell cultures. Biotechnol Bioeng 95:350–361

    Article  CAS  Google Scholar 

  • Wu J, Kaufman RJ (2006) From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ 13:374–384

    Article  CAS  Google Scholar 

  • Youle RJ, Strasser A (2008) The Bcl-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    Article  CAS  Google Scholar 

  • Yun CY, Liu S, Lim SF, Wang T, Chung BY, Jiat Teo J, Chuan KH, Soon AS, Goh KS, Song Z (2007) Specific inhibition of caspase-8 and -9 in CHO cells enhances cell viability in batch and fed-batch cultures. Metab Eng 9:406–418

    Google Scholar 

  • Zhu Y, Cuenca JV, Zhou WC, Varma A (2008) NS0 cell damage by high gas velocity sparging in protein-free and cholesterol-free cultures. Biotechnol Bioeng 101:751–760

    Article  CAS  Google Scholar 

  • Zinkel S, Gross A, Yang E (2006) Bcl-2 family in DNA damage and cell cycle control. Cell Death Differ 13:1351–1359

    Article  CAS  Google Scholar 

  • Zustiak M, Pollack JK, Marten MR, Betenbaugh MJ (2008) Feast of famine: autophagy control and engineering in eukaryotic cell culture. Curr Optin Biotech 5:518–526

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Al-Rubeai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krampe, B., Al-Rubeai, M. Cell death in mammalian cell culture: molecular mechanisms and cell line engineering strategies. Cytotechnology 62, 175–188 (2010). https://doi.org/10.1007/s10616-010-9274-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-010-9274-0

Keywords

Navigation