Skip to main content
Log in

A New Approach to nth Order Fuzzy Differential Equations

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

This paper proposes a new method based on fuzzy center and radius for solving n th order fuzzy differential equations. First, the fuzzy differential equation is solved in term of fuzzy center and then this solution is used to find the radius of the fuzzy solution. Finally using the solution of fuzzy center and radius, one obtains the solution of the governing fuzzy differential equation. The proposed method is illustrated by considering three cases with numerical examples along with one application problem of vibration. Results obtained are also compared with solutions by existing methods and are found to be in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Abbod, D. A. Linkens, and M. Mahfof, “Survey of utilisation of fuzzy technology in medicine and healthcare,” Fuzzy Sets Syst., 120, 331–349 (2001).

    Article  MathSciNet  Google Scholar 

  2. A. Bencsik, B. Bede, J. Tar, and J. Fodor, “Fuzzy differential equations in modeling hydraulic differential servo cylinders,” in: Third Romanian–Hungarian Join Symp. on Applied Computational Intelligence (SACI), Timisoara, Romania (2006).

  3. L. C. Barros, R. C. Bassanezi, and P. A. Tonelli, “Fuzzy modeling in population dynamics,” Ecol. Model., 128, 27–33 (2000).

    Article  Google Scholar 

  4. S. L. Chang and L. A. Zadeh, “On fuzzy mapping and control,” IEEE Trans. Syst Man Cybern., 2, 30–34 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Dubois and H. Prade, “Towards fuzzy differential calculus: Part 3, differentiation,” Fuzzy Sets Syst., 8, 225–233 (1982).

    Article  MATH  Google Scholar 

  6. O. Kaleva, “Fuzzy differential equations,” Fuzzy Sets Syst., 24, 301–317 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  7. O. Kaleva, “The Cauchy problem for fuzzy differential equations,” Fuzzy Sets Syst., 35, 389–396 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Seikkala, “On the fuzzy initial value problem,” Fuzzy Sets Syst., 24, 319–330 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Song and C. Wu, “Existence and uniqueness of solutions to Cauchy problem of fuzzy differential equations,” Fuzzy Sets Syst., 110, 55–67 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Y. Lan and J. J. Nieto, “On initial value problems for first-order implicit impulsive fuzzy differential equations,” Dynam. Syst. Appl., 18, 677–686 (2009).

    MathSciNet  MATH  Google Scholar 

  11. Ji-Huan He, “Variational iteration method for autonomous ordinary differential systems,” Appl. Math. Comput., 114, 115–123 (2000).

    MathSciNet  MATH  Google Scholar 

  12. T. Allahviranloo, N. A. Kiani, and M. Barkhordari, “Toward the existence and uniqueness of solutions of second-order fuzzy differential equations,” Inform. Sci., 179, 1207–1215 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Khastan, J. J. Nieto, and R. Rodriguez-Lopez, “Variation of constant formula for first order fuzzy differential equations,” Fuzzy Sets Syst., 177, 20–33 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Chalco-Cano and H. Roman-Flores, “On new solutions of fuzzy differential equations,” Chaos, Solitons Fractals, 38, 112–119, (2008).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Xu, Z. Liao, and J. J. Nieto, “A class of linear differential dynamical systems with fuzzy matrices,” J. Math. Anal. Appl., 368, 54–68 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Pederson and M. Sambandham, “The Runge–Kutta method for hybrid fuzzy differential equations,” Nonlinear Anal.: Hybrid Syst., 2, 626–634 (2008).

    MathSciNet  MATH  Google Scholar 

  17. M. Ma, M. Friedman, and A. Kandel, “Numerical solutions of fuzzy differential equations,” Fuzzy Sets Syst., 105, 133–138 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Parandin, “Numerical solution of fuzzy differential equations of n th-order by Runge–Kutta method,” Neural Comput. Appl., 21, S347–S355 (2012).

    Article  Google Scholar 

  19. S. Tapaswini and S. Chakraverty, “A new approach to fuzzy initial value problem by improved Euler method,” Int. J. Fuzzy Inform. Eng., 4, 293–312 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Tapaswini and S. Chakraverty, “Euler based new solution method for fuzzy initial value problems,” Int. J. Artific. Intell. Soft Comput., 4, 58–79 (2014).

    Article  MATH  Google Scholar 

  21. O. S. Fard and N. Ghal-Eh, “Numerical solutions for linear system of first-order fuzzy differential equations with fuzzy constant coefficients Inform. Sci., 181, 4765–4779 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  22. J. J. Buckley and T. Feuring, “Fuzzy initial value problem for n th-order linear differential equations,” Fuzzy Sets Syst., 121, 247–255 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Prakash and V. Kalaiselvi, “Numerical solutions of fuzzy differential equations by using Hybrid methods,” Fuzzy Inform. Eng., 4, 445–455 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Effati and M. Pakdaman, “Artificial neural network approach for solving fuzzy differential equations,” Inform. Sci., 180, 1434–1457 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Mosleh and M. Otadi, “Simulation and evaluation of fuzzy differential equations by fuzzy neural network,” Appl. Soft Comput., 12, 2817–2827 (2012).

    Article  Google Scholar 

  26. B. Bede, “Note on numerical solutions of fuzzy differential equations by predictor-corrector method,” Inform. Sci., 178, 1917–1922 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  27. W. Cong-Xin and M. Ming, “Embedding problem of fuzzy number space: Part I,” Fuzzy Sets Syst., 44, 33–38 (1991).

    Article  Google Scholar 

  28. M. Hanss, Applied Fuzzy Arithmetic: An Introduction with Engineering Applications, Springer-Verlag, Berlin (2005).

    MATH  Google Scholar 

  29. L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis, Springer, France (2001).

    Book  MATH  Google Scholar 

  30. T. J. Ross, Fuzzy Logic with Engineering Applications, John Wiley & Sons, New York (2004).

    MATH  Google Scholar 

  31. H. J. Zimmermann, Fuzzy Set Theory and Its Application, Kluwer Academic Publishers, Boston/Dordrecht/London (2001).

    Book  Google Scholar 

  32. S. Abbasbandy, T. Allahviranloo, and P. Darabi, “Numerical solution of n-order fuzzy differential equations by Runge–Kutta method,” Math. Comput. Appl., 16, 935–946 (2011).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tapaswini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapaswini, S., Chakraverty, S. & Allahviranloo, T. A New Approach to nth Order Fuzzy Differential Equations. Comput Math Model 28, 278–300 (2017). https://doi.org/10.1007/s10598-017-9364-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-017-9364-3

Keywords

Navigation