Skip to main content

An Estimation of the Solution of First Order Fuzzy Differential Equations

  • Chapter
  • First Online:
Advances in Fuzzy Integral and Differential Equations

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 412))

  • 298 Accesses

Abstract

The aim of this paper is to suggest two numerical methods for solving first order fuzzy differential equation under generalized differentiability. Modified Euler method and Piecewise approximate method are two methods that we introduce in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasbandy, S., Allahviranloo, T.: Numerical solution of fuzzy differential equation by Taylor method. J. Comput. Method Appl. Math. 2, 113–124 (2002)

    Article  MathSciNet  Google Scholar 

  2. Abbasbandy, S., Allahviranloo, T.: Numerical solution of fuzzy differential equation. Math. Comput. Appl. 7(1), 41–52 (2002)

    MathSciNet  Google Scholar 

  3. Abbasbandy, S., Allahviranloo, T.: The Adomian decomposition method applied to the Fuzzy system of Fredholm integral equations of the second kind. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 14(1), 101–110 (2006)

    Article  MathSciNet  Google Scholar 

  4. Abbasbandy, S., Allahviranloo, T., Lopez-Pouso, O., Nieto, J.J.: Numerical methods for fuzzy differential inclusions. Comput. Math. Appl. 48, 1633–1641 (2004)

    Google Scholar 

  5. Abbasbandy, S., Allahviranloo, T.: Numerical solution of fuzzy differential equation by Runge-Kutta method. Nonlinear Stud. 11(1), 117–129 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Ahmadian, A., Salahshour, S., Chan, C., Baleanu, D.: Numerical solutions of fuzzy differential equations by an efficient Runge-Kutta method with generalized differentiability. Fuzzy Sets Syst. 331, 47–67 (2018)

    Article  MathSciNet  Google Scholar 

  7. Ahmadian, A., Suleiman, M., Ismail, F.: An improved Runge-Kutta method for solving fuzzy differential equations under generalized differentiability. AIP Conf. Proc. 1482, 325–330 (2012)

    Article  Google Scholar 

  8. Allahviranloo, T., Ahmady, E., Ahmady, N.: Nth order fuzzy linear differential equations. Inf. Sci. 178: 1309–1324 (2008)

    Google Scholar 

  9. Allahviranloo, T., Ahmadi, M.B.: Fuzzy Laplace transforms. Soft Comput. 14, 235–243 (2010)

    Google Scholar 

  10. Allahviranloo, T., Amirteimoori, A., Khezerloo, M., Khezerloo, S.: A new method for solving fuzzy volterra integro-differential equations. Aust. J. Basic Appl. Sci. 5(4), 154–164 (2011)

    MATH  Google Scholar 

  11. Allahviranloo, T., Gouyandeh, Z., Armand, A.: A full fuzzy method for solving differential equation based on Taylor expansion. J. Intell. Fuzzy Syst. 29, 1039–1055 (2015)

    Article  MathSciNet  Google Scholar 

  12. Allahviranloo, T., Ahmady, N., Ahmady, E.: Numerical solution of fuzzy differential equations by predictor-corrector method. Inf. Sci. 177(7), 1633–1647 (2007)

    Article  MathSciNet  Google Scholar 

  13. Allahviranloo, T., Abbasbandy, S., Ahmady, N., Ahmady, E.: Improved predictor-corrector method for solving fuzzy initial value problems. Inf. Sci. 179, 945–955 (2009)

    Article  MathSciNet  Google Scholar 

  14. BaloochShahryari, M.R., Salashour, S.: Improved predictor—corrector method for solving fuzzy differential equations under generalized differentiability. J. Fuzzy Set Valued Anal. 2012, 1–16 (2012)

    Article  MathSciNet  Google Scholar 

  15. Allahviranloo, T., Abbasbandy, S., Sedaghgatfar, O., Darabi, P.: A new method for solving fuzzy integro-differential equation under generalized differentiability. Neural Comput. Appl. 21(SUPPL. 1), 191–196 (2012)

    Article  Google Scholar 

  16. Bede, B., Gal, S.G.: Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Set Syst. 151, 581–599 (2005)

    Article  MathSciNet  Google Scholar 

  17. Bede, B., Gal, S.G.: Remark on the new solutions of fuzzy differential equations. Chaos Solitons Fractals (2006)

    Google Scholar 

  18. Bede, B., Stefanini, L.: Solution of fuzzy differential equations with generalized differentiability using LU-parametric representation. EUSFLAT 1, 785–790 (2011)

    MATH  Google Scholar 

  19. Bede, B., Stefanini, L.: Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Syst. 230, 119–141 (2013)

    Article  MathSciNet  Google Scholar 

  20. Chang, S., Zadeh, L.: On fuzzy mapping and control. IEEE Trans. Syst. Cybern. 2, 30–34 (1972)

    Article  MathSciNet  Google Scholar 

  21. Chalco-Cano, Y., Romoman-Flores, H.: On new solutions of fuzzy differential equations. Chaos, Solitons and Fractals 38, 112–119 (2008)

    Article  MathSciNet  Google Scholar 

  22. Dubois, D., Prade, H.: Toward fuzzy differential calculus: part 3. Differentiation. Fuzzy Sets Syst. 225–233 (1982)

    Google Scholar 

  23. Epperson, J.F.: An Introduction to Numerical Methods and Analysis. Wiley (2007)

    Google Scholar 

  24. Goetschel, R., Voxman, W.: Elementary fuzzy calculus. Fuzzy Sets Syst. 24, 31–43 (1987)

    MathSciNet  MATH  Google Scholar 

  25. Hajighasemi, S., Allahviranloo, T., Khezerloo, M., Khorasany, M., Salahshour, S.: Existence and uniqueness of solutions of fuzzy volterra integro-differential equations. Inf. Process. Manag. Uncertain. Knowl. Based Syst. 81, 491–500 (2010)

    MATH  Google Scholar 

  26. Hukuhara, M.: Integration des applications mesurables dont la valeur est un compact convex. Funkcial. Ekvac. 10, 205–229 (1967)

    MathSciNet  MATH  Google Scholar 

  27. Jafari, R., Razvarz, S.: Solution of fuzzy differential equations using fuzzy Sumudu transforms. Math. Comput. Appl. 23, (2018). https://doi.org/10.3390/mca23010005

  28. Kaleva, O.: Fuzzy differential equations. Fuzzy Sets Syst. 24, 301–317 (1987)

    Article  MathSciNet  Google Scholar 

  29. Kandel, A., Byatt, W.J.: Fuzzy differential equations. In: Proceedings of International Conference on Cybernetics and Society, Tokyo (1978)

    Google Scholar 

  30. Ma, M., Friedman, M., Kandel, A.: Numerical solutions of fuzzy differential equations. Fuzzy Sets Syst. 105, 133–138 (1999)

    Article  MathSciNet  Google Scholar 

  31. Negoita, C.V., Ralescu, D.: Applications of Fuzzy Sets to Systems Analysis. Wiley, New York (1975)

    Book  Google Scholar 

  32. Puri, M.L., Ralescu, D.A.: Differentials of fuzzy functions. J. Math. Anal. Appl. 114, 409–422 (1986)

    Article  MathSciNet  Google Scholar 

  33. Rabiei, F., Ismail, F., Ahmadian, A., Salahshour, S.: Numerical solution of second-order fuzzy differential equation using improved Runge-Kutta Nystrom method. Math. Probl. Eng. 2013, 1–10 (2013)

    Article  MathSciNet  Google Scholar 

  34. Salahshour, S., Ahmadian, A., Abbasbandy, S., Baleanud, D.: M-fractional derivative under interval uncertainty: theory, properties and applications. Chaos, Solitons and Fractals 117, 84–93 (2018)

    Article  MathSciNet  Google Scholar 

  35. Stefanini, L.: A generalization of Hukuhara difference for interval and fuzzy arithmetic. Advances in Soft Computing, vol. 48, Springer (2008). An extended version is available online at the RePEc service. https://econpapers.repec.org/paper/urbwpaper/08-5f01.htm

  36. Seikkala, S.: On the fuzzy initial value problem. Fuzzy Sets Syst. 24, 319–330 (1987)

    Article  MathSciNet  Google Scholar 

  37. Stefanini, L., Bede, B.: Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal. 71, 1311–1328 (2009)

    Article  MathSciNet  Google Scholar 

  38. Tapaswini, S., Chakraverty, S.: A new approach to fuzzy initial value problem by improved Euler method. Fuzzy Inf. Eng. 3, 293–312 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ahmady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmady, N., Allahviranloo, T., Ahmady, E. (2022). An Estimation of the Solution of First Order Fuzzy Differential Equations. In: Allahviranloo, T., Salahshour, S. (eds) Advances in Fuzzy Integral and Differential Equations. Studies in Fuzziness and Soft Computing, vol 412. Springer, Cham. https://doi.org/10.1007/978-3-030-73711-5_4

Download citation

Publish with us

Policies and ethics