Skip to main content
Log in

A fully coupled scheme using virtual element method and finite volume for poroelasticity

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this paper, we design and study a fully coupled numerical scheme for the poroelasticity problem modeled through Biot’s equations. The classical way to numerically solve this system is to use a finite element method for the mechanical equilibrium equation and a finite volume method for the fluid mass conservation equation. However, to capture specific properties of the underground medium such as heterogeneities, discontinuities, and faults, meshing procedures commonly lead to badly shaped cells for finite element-based modeling. Consequently, we investigate the use of the recent virtual element method which appears as a potential discretization method for the mechanical part and could therefore allow the use of a unique mesh for both the mechanical and fluid flow modeling. Starting from a first insight into virtual element method applied to the elastic problem in the context of geomechanical simulations, we apply in addition a finite volume method to take care of the fluid conservation equation. We focus on the first-order virtual element method and the two-point flux approximation for the finite volume part. A mathematical analysis of this original coupled scheme is provided, including existence and uniqueness results and a priori estimates. The method is then illustrated by some computations on two- or three-dimensional grids inspired by realistic application cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013). https://doi.org/10.1016/j.camwa.2013.05.015

    Article  Google Scholar 

  2. Andersen, O., Nilsen, H. M., Raynaud, X.: Virtual element method for geomechanical simulations of reservoir models. Comput. Geosci. 21(5), 877–893 (2017). https://doi.org/10.1007/s10596-017-9636-1

    Article  Google Scholar 

  3. Beirão Da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013). https://doi.org/10.1142/S0218202512500492

    Article  Google Scholar 

  4. Beirão Da Veiga, L., Brezzi, F., Marini, L.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013). https://doi.org/10.1137/120874746

    Article  Google Scholar 

  5. Beirão Da Veiga, L., Brezzi, F., Marini, L., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014). https://doi.org/10.1142/S021820251440003X

    Article  Google Scholar 

  6. Beirão Da Veiga, L., Lovadina, C., Mora, D.: A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295, 327–346 (2015). https://doi.org/10.1016/j.cma.2015.07.013

    Article  Google Scholar 

  7. Beirão Da Veiga, L., Brezzi, F., Marini, L., Russo, A.: Serendipity nodal vem spaces. Comput. Fluids 141, 2–12 (2016). https://doi.org/10.1016/j.compfluid.2016.02.015

    Article  Google Scholar 

  8. Bellomo, N., Brezzi, F., Manzini, G.: Recent techniques for PDE discretizations on polyhedral meshes. Math. Models Methods Appl. Sci. 24(08), 1453–1455 (2014). https://doi.org/10.1142/S0218202514030018

    Article  Google Scholar 

  9. Berrone, S., Borio, A.: Orthogonal polynomials in badly shaped polygonal elements for the virtual element method. Finite Elem. Anal. Des. 129, 14–31 (2017). https://doi.org/10.1016/j.finel.2017.01.006

    Article  Google Scholar 

  10. Biot, M. A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941). https://doi.org/10.1063/1.1712886

    Article  Google Scholar 

  11. Bishop, J.: A displacement-based finite element formulation for general polyhedra using harmonic shape functions. Int. J. Numer. Methods Eng. 97(1), 1–31 (2014). https://doi.org/10.1002/nme.4562

    Article  Google Scholar 

  12. Brenner, S. C., Qingguang, G., Sung, L.: Some estimates for virtual element methods. Comput. Methods Appl. Math. 17(4), 553–574 (2017). https://doi.org/10.1515/cmam-2017-0008

    Article  Google Scholar 

  13. Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 3 edn, vol. 15. Springer. https://doi.org/10.1007/978-0-387-75934-0 (2008)

  14. Cangiani, A., Georgoulis, E. H., Pryer, T., Sutton, O. J.: A posteriori error estimates for the virtual element method. Numer. Math. 137(4), 857–893 (2017). https://doi.org/10.1007/s00211-017-0891-9

    Article  Google Scholar 

  15. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009). https://doi.org/10.1137/070706616

    Article  Google Scholar 

  16. Di Pietro, D.A., Ern, A., Lemaire, S.: A Review of Hybrid High-Order Methods: Formulations, Computational Aspects, Comparison with Other Methods, pp. 205–236. Springer. https://doi.org/10.1007/978-3-319-41640-3_7(2016)

  17. Droniou, J.: Finite volume schemes for diffusion equations: Introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24(8, SI), 1575–1619 (2014). https://doi.org/10.1142/S0218202514400041

    Article  Google Scholar 

  18. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Techniques of Scientific Computing (Part 3), Handbook of Numerical Analysis, vol. 7, pp. 713–1018. Elsevier (2000), https://doi.org/10.1016/S1570-8659(00)07005-8

  19. Gain, A. L., Talischi, C., Paulino, G.H.: On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282, 132–160 (2014). https://doi.org/10.1016/j.cma.2014.05.005

    Article  Google Scholar 

  20. Guy, N., Enchéry, G., Renard, G.: Numerical modeling of thermal EOR: comprehensive coupling of an AMR-based model of thermal fluid flow and geomechanics. Oil Gas Sci. Technol. -Rev. IFP Energies nouvelles 67 (6), 1019–1027 (2012). https://doi.org/10.2516/ogst/2012052

    Article  Google Scholar 

  21. Lemaire, S.: Nonconforming Discretizations of a Poromechanical Model on General Meshes. Ph.D. thesis, Université Paris-Est (2013)

    Google Scholar 

  22. Paulino, G.H., Gain, A.L.: Bridging art and engineering using Escher-based virtual elements. Struct. Multidiscip. Optim. 51(4), 867–883 (2015). https://doi.org/10.1007/s00158-014-1179-7

    Article  Google Scholar 

  23. Quey, R., Dawson, P., Barbe, F.: Large-scale 3D random polycrystals for the finite element method: generation, meshing and remeshing. Comput. Methods Appl. Mech. Eng. 200, 1729–1745 (2011). https://doi.org/10.1016/j.cma.2011.01.002

    Article  Google Scholar 

  24. Rivière, B., Wheeler, M. F., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39(3), 902–931 (2002). https://doi.org/10.1137/S003614290037174X

    Article  Google Scholar 

  25. Settari, A., Mourits, F.: Coupling of geomechanics and reservoir simulation models. In: Proceedings, 8th International Conference on Computer Methods and Advances in Geomechanics, vol. 3, pp. 2151–2158. Balkema (1994)

  26. Showalter, R.: Diffusion in poro-elastic media. J. Math. Anal. Appl. 251 (1), 310–340 (2000). https://doi.org/10.1006/jmaa.2000.7048

    Article  Google Scholar 

  27. Sukumar, N., Malsch, E.: Recent advances in the construction of polygonal finite element interpolants. Arch. Comput. Methods Eng. 13(1), 129 (2006). https://doi.org/10.1007/BF02905933

    Article  Google Scholar 

  28. Beirão da Veiga, L., Lipnikov, K., Manzini, G.: The Mimetic Finite Difference Method for Elliptic Problems, Modeling, Simulation & Applications, vol. 11. Springer. https://doi.org/10.1007/978-3-319-02663-3 (2014)

  29. Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comput. 83(289), 2101–2126 (2014). https://doi.org/10.1090/S0025-5718-2014-02852-4

    Article  Google Scholar 

  30. White, J. A., Castelletto, N., Tchelepi, H. A.: Block-partitioned solvers for coupled poromechanics: a unified framework. Comput. Methods Appl. Mech. Eng. 303, 55–74 (2016). https://doi.org/10.1016/j.cma.2016.01.008

    Article  Google Scholar 

  31. Zoback, M. D.: Reservoir Geomechanics. Cambridge University Press. https://doi.org/10.1017/CBO9780511586477 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Coulet.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Details on the proofs

Appendix: Details on the proofs

We provide here the details of the computation that led to the error estimate.

1.1 A.1 Proof of the tools

  1. 1.

    For two real a and b and for some 𝜖 > 0,

    $$ \left( \sqrt\epsilon a-\frac{b}{\sqrt \epsilon}\right)^{2} = \epsilon a^{2} - 2ab + \frac{b^{2}}{\epsilon}\ge 0 $$

    implying that \(2ab \le \epsilon a^{2} + \frac {b^{2}}{\epsilon }\).

  2. 2.

    Let v ∈ (H1(Ω))d. Since \(\text {div}\left (\mathbf {v}\right ) = {\sum }_{k=1}^{d} \frac {\partial \mathbf {v}_{k}}{\partial k}\), we have the following:

    $$ \begin{array}{@{}rcl@{}} \| \text{div}\left( \mathbf{v}\right) \|_{L^{2}({\Omega})}\! &=&\! \left\|\sum\limits_{k=1}^{d} \frac{\partial \mathbf{v}_{k}}{\partial k}\right\|_{L^{2}({\Omega})}\\ &\le&\! \sum\limits_{k=1}^{d} \left\|\frac{\partial \mathbf{v}_{k}}{\partial k}\right\|_{L^{2}({\Omega})} \text{(triangle inequality)}\\ &\le&\! \left( \sum\limits_{k=1}^{d} 1\right)^{\frac{1}{2}} \left( \sum\limits_{k=1}^{d} \left\|\frac{\partial \mathbf{v}_{k}}{\partial k}\right\|_{L^{2}({\Omega})}^{2}\right)^{\frac{1}{2}} \text{(CS)}\\ &\le&\! \sqrt{d}| \mathbf{v} |_{H^{1}({\Omega})}. \end{array} $$
  3. 3.

    Apply Taylor’s expansion with integral remainder

    $$ v(t) = \sum\limits_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(t-a)^{k} + {{\int}_{a}^{t}}\frac{f^{(n+1)}(s)}{n!}(t-s)^{n}ds $$

    with t = tn, a = tn− 1 and n = 0 for the first equality or n = 1 for the second one.

  4. 4.

    Let \(\mathcal B\) be a symmetric bilinear form and {an}n≥ 0, {bn}n≥ 0 two sequences belonging to the space of its arguments. For N = 1, we obviously have \(\mathcal B(a_{1}, b_{1} - b_{0}) = \mathcal {B}(a_{1},b_{1}) - \mathcal {B}(a_{1},b_{0}). \) Now assume that

    $$ \begin{array}{@{}rcl@{}} &&{} \sum\limits_{k=1}^{N} \mathcal{B}(a_{k}, b_{k} - b_{k-1}) = \mathcal{B}(a_{N},b_{N}) - \mathcal{B}(a_{1},b_{0})\\ &&\quad - \sum\limits_{k=1}^{N-1}\mathcal{B}(b_{k},a_{k+1}-a_{k}) \text{ holds for a given N.} \end{array} $$

    Then,

    $$ \begin{array}{@{}rcl@{}} &&\sum\limits_{k=1}^{N+1} \mathcal{B}(a_{k}, b_{k} - b_{k-1}) \\ &=& \mathcal{B}(a_{N+1}, b_{N+1} - b_{N}) {+ \sum\limits_{k=1}^{N}\mathcal{B}(a_{k}, b_{k} - b_{k-1})}\\ &=& \mathcal{B}(a_{N+1}, b_{N+1} - b_{N}) + \mathcal{B}(a_{N},b_{N}) - \mathcal{B}(a_{1},b_{0}) \\ &&- \sum\limits_{k=1}^{N-1}\mathcal{B}(b_{k},a_{k+1}-a_{k}) \text{ by assumption}\\ &=& \mathcal{B}(a_{N+1}, b_{N+1}) - \mathcal B(a_{N+1}, b_{N}) + \mathcal{B}(a_{N},b_{N})\\ &&- \mathcal{B}(a_{1},b_{0}) - \sum\limits_{k=1}^{N-1}\mathcal{B}(b_{k},a_{k+1}-a_{k})\\ &=& \mathcal{B}(a_{N+1}, b_{N+1}) - \mathcal{B}(a_{1},b_{0})\\ &&- \sum\limits_{k=1}^{N}\mathcal{B}(b_{k},a_{k+1}-a_{k}) \text{ by symmetry of} \mathcal B. \end{array} $$
  5. 5.

    For two sequences {an}n≥ 0, {bn}n≥ 0 in L2(Ω) or in (L2(Ω))d and n ≥ 1,

    $$ \begin{array}{@{}rcl@{}} &&\left| {\int}_{\Omega} (b^{n} - b^{n-1})a^{n}\right|\\ &=& {\int}_{\Omega} \left| \left( {\int}_{t^{n-1}}^{t^{n}}\partial_{t} b(s) ds\right)\right|\left|a^{n}\right| \\ &\le& {\int}_{\Omega} \left( {\Delta} t{\int}_{t^{n-1}}^{t^{n}}(\partial_{t} b(s))^{2} ds\right)^{\frac{1}{2}} \left|a^{n}\right| \text{ (CS in time)}\\ &\le& \sqrt{{\Delta} t}\left( {\int}_{\Omega} {\int}_{t^{n-1}}^{t^{n}}(\partial_{t} b(s))^{2} ds\right)^{\frac{1}{2}} \\ &&\times \left( {\int}_{\Omega} (a^{n})^{2}\right)^{\frac{1}{2}} \text{ (CS in space)}\\ &=& \| a^{n} \|_{L^{2}} \sqrt{{\Delta} t}\left( {\int}_{t^{n-1}}^{t^{n}} {\int}_{\Omega}(\partial_{t} b(s))^{2} ds \right)^{\frac{1}{2}} \\ &=& \| a^{n} \|_{L^{2}} \left( {\Delta} t{\int}_{t^{n-1}}^{t^{n}} \| \partial_{t} b(s) \|_{L^{2}}^{2}ds \right)^{\frac{1}{2}}. \end{array} $$

1.2 A.2 Proof of Grönwall’s inequality

We provide the proof for a more general inequality:

Lemma 6

Let (an)n≥ 0,(bn)n≥ 0,(cn)n≥ 0be sequences of non-negative numbers with (cn)n≥ 0non-decreasing. Assume that

$$ a_{0} + b_{0} \le c_{0} $$

and that there existsλ > 0 such that

$$ \forall{N \ge 1}, \quad a_{N} + b_{N} \leq \lambda \sum\limits_{m=0}^{N-1} a_{m} + c_{N}. $$

Then, there holds

$$ \forall{N \ge 0},\quad a_{N} + b_{N} \leq c_{N}\exp(\lambda N). $$

We first proceed by induction, showing that

$$ \forall N\ge 0, \quad a_{N} + b_{N} \le c_{N} (1+\lambda)^{N} . $$
(1)

By assumption, for N = 0, we have a0 + b0c0. Now assume that Eq. 36 holds for every nN and let us prove it holds when n = N + 1. Using the assumptions of the lemma,

$$ \begin{array}{@{}rcl@{}} a_{N+1} + b_{N+1} &\leq& \lambda \sum\limits_{m=0}^{N} a_{m} + c_{N+1} \\ &\leq& \lambda \sum\limits_{m=0}^{N} \left( c_{m}(1+\lambda)^{m} -b_{m} \right) \\ &&+ c_{N+1} \text{\quad from (36)}\\ &\leq& \lambda c_{N+1}\sum\limits_{m=0}^{N} (1+\lambda)^{m} + c_{N+1} \end{array} $$

because (cn)n≥ 0 is non-decreasing and (bn)n≥ 0 is non-negative. Summing a geometric sequence,

$$ \sum\limits_{m=0}^{N} (1+\lambda)^{m} = \frac{1 - (1+\lambda)^{N+1}}{1 - (1+\lambda)} = \frac{(1+\lambda)^{N+1}-1}{\lambda} $$

and thus aN+ 1 + bN+ 1cN+ 1(1 + λ)N+ 1. This proves the induction, and the lemma comes from the estimate (1 + λ)n ≤ exp(nλ).

1.3 A.3 Proof of the estimates

We provide here the proofs of the estimates obtained on the Bi terms.

$$ \begin{array}{@{}rcl@{}} \bullet{\Delta} t {B_{1}^{n}} &=& - \alpha{\Delta} t{\int}_{\Omega} \text{div}\left( D^{-}E^{I,n}_{\mathbf{u}}\right)E_{p}^{A,n}\\ &&+ \alpha{\Delta} t{\int}_{\Omega} \text{div}\left( D^{-}E_{\mathbf{u}}^{A,n}\right) E_{p}^{I,n} \end{array} $$

We split this term in two parts corresponding to the two integrals. For the first part, applying successively tool 5 and tool 2,

$$ \begin{array}{@{}rcl@{}} &&{}\left| {\Delta} t {\int}_{\Omega} E_{p}^{A,n} \text{div}\left( D^{-}E_{\mathbf{u}}^{I,n}\right) \right|\\ &&\quad= \sqrt{{\Delta} t}\| E_{p}^{A,n} \|_{L^{2}} \left( {\int}_{t^{n-1}}^{t^{n}}\| \text{div}\left( \partial_{t}E_{\mathbf{u}}^{I}\right) \|_{L^{2}}^{2}\right)^{\frac{1}{2}}\\ &&\quad\le \sqrt{d{\Delta} t}\| E_{p}^{A,n} \|_{L^{2}} \left( {\int}_{t^{n-1}}^{t^{n}}\| \partial_{t}E_{\mathbf{u}}^{I} \|_{H^{1}}^{2}\right)^{\frac{1}{2}} \end{array} $$

then, we apply Young’s inequality with \(\epsilon =\frac {1}{4}\) for the last term and \(\epsilon = \frac {\epsilon _{r}}{4}\) for the others:

$$ \begin{array}{@{}rcl@{}} &&{}\left| 2\sum\limits_{n=1}^{N}\alpha{\Delta} t {\int}_{\Omega} E_{p}^{A,n} \text{div}\left( D^{-}E_{\mathbf{u}}^{I,n}\right) \right| \\ &&\quad\le \frac{\epsilon_{r}}{4} \sum\limits_{n=1}^{N-1}{\Delta} t\|{E_{p}^{A,n}}\|_{L^{2}}^{2} + \frac{{\Delta} t}{4} \| E_{p}^{A,N} \|_{L^{2}}^{2}\\ &&\qquad+ 4d\alpha^{2}\left( \frac{1}{\epsilon_{r}} \sum\limits_{n=1}^{N-1}\left( {\int}_{t^{n-1}}^{t^{n}} \| \partial_{t} E_{\mathbf{u}}^{I} \|_{H^{1}}^{2}\right)^{\frac{1}{2}} \right.\\ &&\qquad\left. + \left( {\int}_{t^{N-1}}^{t^{N}}\| \partial_{t} E_{\mathbf{u}}^{I} \|_{H^{1}}^{2}\right)^{\frac{1}{2}} \right). \end{array} $$

We now define the L2 in time norm as \(\| g \|_{L^{2}(T)}^{2} = {\int }_{t^{0}}^{t^{N}} g(s)^{2} ds\). We can add the missing terms (which are non-negative) to write the following:

$$ \begin{array}{@{}rcl@{}} &&{} \left| 2\sum\limits_{n=1}^{N}\alpha{\Delta} t {\int}_{\Omega} E_{p}^{A,n} \text{div}\left( D^{-}E_{\mathbf{u}}^{I,n}\right) \right|\\ &&\quad \le \frac{\epsilon_{r}}{4} \sum\limits_{n=1}^{N-1}{\Delta} t\|{E_{p}^{A,n}}\|_{L^{2}}^{2} + \frac{{\Delta} t}{4} \| E_{p}^{A,N} \|_{L^{2}}^{2} \\ &&\qquad+ 4d\alpha^{2}\left( \frac{1}{\epsilon_{r}} \| \partial_{t} E_{\mathbf{u}}^{I} \|_{L^{2}(0,T; H^{1})}^{2} +\| \partial_{t} E_{\mathbf{u}}^{I} \|_{L^{2}(0,T; H^{1})}^{2} \right)\\ &&\quad\le \frac{\epsilon_{r}}{4} \sum\limits_{n=1}^{N-1}{\Delta} t\| E_{p}^{A,n} \|_{L^{2}}^{2} + \frac{{\Delta} t}{4} \| E_{p}^{A,N} \|_{L^{2}}^{2}\\ &&\qquad + 4d\alpha^{2}\left( \frac{1}{\tilde \epsilon_{r}} \| \partial_{t} E_{\mathbf{u}}^{I} \|_{L^{2}(0,T;H^{1})}^{2} \right) \end{array} $$

where \(\tilde \epsilon _{r} = \frac {\epsilon _{r}}{1+\epsilon _{r}}\). For the second part, a partial summation is done first:

$$ \begin{array}{@{}rcl@{}} &&{} 2\sum\limits_{n=1}^{N}\! {\Delta} t\!{\int}_{\Omega} \alpha \text{div}\!\left( D^{-}E_{\mathbf{u}}^{A,n}\right)E_{p}^{I,n}\! =\! 2\!{\int}_{\Omega} \alpha \text{div}\left( E_{\mathbf{u}}^{A,N}\right)E_{p}^{I,N}\\ &&{}-\! 2\!{\int}_{\Omega}\! \alpha \text{div}\!\left( E_{\mathbf{u}}^{A,0}\right)\! E_{p}^{I,1} \! -\! 2\sum\limits_{n=1}^{N-1}\! {\Delta} t\!{\int}_{\Omega}\! \alpha \text{div}\!\left( \! E_{\mathbf{u}}^{A,n}\!\right)\! D^{-}E_{p}^{I,n+1} \end{array} $$

and, using the same procedure as above,

$$ \begin{array}{@{}rcl@{}} &&{} 2\left|{\int}_{\Omega}{} \alpha \text{div}\!\left( E_{\mathbf{u}}^{A,N}\right)\!E_{p}^{I,N}\right|\! \le\! \frac{\epsilon_{l}}{4} \| E_{\mathbf{u}}^{A,N} \|_{H^{1}}^{2}\! +\! \frac{4d\alpha^{2}}{\epsilon_{l}}\| E_{p}^{I,N} \|_{L^{2}}^{2},\\ &&{}2\left|{\int}_{\Omega} \alpha \text{div}\left( E_{\mathbf{u}}^{A,0}\right)E_{p}^{I,1}\right| \! \le\! \frac{\epsilon_{l}}{4} \| E_{\mathbf{u}}^{A,0} \|_{H^{1}}^{2} + \frac{4d\alpha^{2}}{\epsilon_{l}}\| E_{p}^{I,1} \|_{L^{2}}^{2},\\ &&{}2\left| \sum\limits_{n=1}^{N-1}\!\alpha{\Delta} t\! {\int}_{\Omega}\! \text{div}\!\left( E_{\mathbf{u}}^{A,n}\right)\!D^{-}E_{p}^{I,n+1} \right|\! \le\! \frac{\epsilon_{r}}{4}\sum\limits_{n=1}^{N-1}\!{\Delta} t\| E_{\mathbf{u}}^{A,n} \|_{H^{1}}^{2}\\ &&\quad+\frac{4d\alpha^{2}}{\epsilon_{r}}\| \partial_{t} {E_{p}^{I}} \|_{L^{2}(0,T; L^{2})}^{2}. \end{array} $$

Combining the two parts leads to the estimation on B1:

$$ \begin{array}{@{}rcl@{}} \left|2{\Delta} t \sum\limits_{n=1}^{N}B_{1}\right| \!&\le&\! \frac{\epsilon_{r}}{4} \sum\limits_{n=1}^{N-1}{\Delta} t\| E_{p}^{A,n} \|_{L^{2}}^{2} + \frac{\epsilon_{r}}{4}\sum\limits_{n=1}^{N-1}{\Delta} t\| E_{\mathbf{u}}^{A,n} \|_{H^{1}}^{2}\\ &&+ \frac{{\Delta} t}{4} \| E_{p}^{A,N} \|_{L^{2}}^{2} + \frac{\epsilon_{l}}{4} \| E_{\mathbf{u}}^{A,N} \|_{H^{1}}^{2}\\ &&+ \frac{\epsilon_{l}}{4} \| E_{\mathbf{u}}^{A,0} \|_{H^{1}}^{2} + 4d\alpha^{2}\\ &&\times\left( \frac{\| \partial_{t} E_{\mathbf{u}}^{I} \|_{L^{2}(0,T;H^{1})}^{2}}{\tilde \epsilon_{r}} +\frac{\| E_{p}^{I,N} \|_{L^{2}}^{2}}{\epsilon_{l}} \right.\\ &&\left. + \frac{\| E_{p}^{I,1} \|_{L^{2}}^{2}}{\epsilon_{l}} + \frac{\| \partial_{t} {E_{p}^{I}} \|_{L^{2}(0,T;L^{2})}^{2}}{\epsilon_{r}}\right). \end{array} $$
$$ \begin{array}{@{}rcl@{}} \bullet{\Delta} t {B_{2}^{n}} &=& {\Delta} t \sum\limits_{K\in\tau_{h}} a^{K}(-E_{\mathbf{u}}^{\pi,n}, D^{-}E_{\mathbf{u}}^{A,n}) \\ &&+ {\Delta} t \sum\limits_{K\in \tau_{h}}a_{h}(E_{\mathbf{u}}^{\pi,n} - E_{\mathbf{u}}^{I,n}, D^{-}E_{\mathbf{u}}^{A,n}) \end{array} $$

We start with the aK part. We denote MK the continuity constant of aK and we note that, for a function u locally in (H1(K))d and a function v globally in (H1(Ω))d and for some 𝜖 > 0,

$$ \begin{array}{@{}rcl@{}} \left| \sum\limits_{K\in\tau_{h}}a^{K}(\mathbf{u},\mathbf{v}) \right| &\le& \sum\limits_{K\in\tau_{h}} \left( M_{K} \| \mathbf{u} \|_{H^{1}(K)}\| \mathbf{v} \|_{H^{1}(K)} \right)\\ &\le& \sum\limits_{K\in\tau_{h}} \left( \frac{{M_{K}^{2}}}{2\epsilon} \| \mathbf{u} \|_{H^{1}(K)}^{2} + \frac{\epsilon}{2} \| \mathbf{v} \|_{H^{1}(K)}^{2}\right)\\ &\le& \frac{M^{2}}{2\epsilon} \sum\limits_{K\in\tau_{h}} \| \mathbf{u} \|_{H^{1}(K)}^{2} + \frac{\epsilon}{2} \sum\limits_{K\in\tau_{h}} \| \mathbf{v} \|_{H^{1}(K)}^{2}\\ &=&\frac{M^{2}}{2\epsilon} \| \mathbf{u} \|_{H^{1}(\tau)}^{2} + \frac{\epsilon}{2} \| \mathbf{v} \|_{H^{1}({\Omega})}^{2} \end{array} $$

where M = maxKMK.

We now use the partial summation (recall that aK is symmetric)

$$ \begin{array}{@{}rcl@{}} &&{}2 \sum\limits_{n=1}^{N} {\Delta} t \sum\limits_{K\in\tau_{h}}a^{K}(-E_{\mathbf{u}}^{\pi,n}, D^{-}E_{\mathbf{u}}^{A,n})\\ &&\quad = 2\!\sum\limits_{K\in\tau_{h}}a^{K}\!(-E_{\mathbf{u}}^{\pi,N}, E_{\mathbf{u}}^{A,N})\! -\! 2\sum\limits_{K\in\tau_{h}}a^{K}\!(-E_{\mathbf{u}}^{\pi,1}, E_{\mathbf{u}}^{A,0}) \\ &&\qquad- 2\sum\limits_{n=1}^{N-1} \sum\limits_{K\in\tau_{h}} a^{K}(-(E_{\mathbf{u}}^{\pi,n+1} -E_{\mathbf{u}}^{\pi,n}), E_{\mathbf{u}}^{A,n}) \end{array} $$

and combine it with the previous estimate to write the following:

$$ \begin{array}{@{}rcl@{}} &&{}\left| 2\!\sum\limits_{K\in\tau_{h}}\! a^{K}\!(\!-E_{\mathbf{u}}^{\pi{\kern-.5pt},{\kern-.5pt}N}\!,\! E_{\mathbf{u}}^{A{\kern-.5pt},{\kern-.5pt}N}\!) \right|\!\!\le\! \frac{8M^{2}}{\epsilon_{l}}\| E_{\mathbf{u}}^{\pi{\kern-.5pt},{\kern-.5pt}N} \!\|_{H^{1}({\kern-.5pt}\tau{\kern-.5pt})}^{2} \! +\! \frac{\epsilon_{l}}{8} \|\! E_{\mathbf{u}}^{A{\kern-.5pt},{\kern-.5pt}N} \!\|_{H^{1}}^{2},\\ &&{}\left| 2\!\sum\limits_{K\in\tau_{h}}\! a^{K}\!(\!-E_{\mathbf{u}}^{\pi,1},\! E_{\mathbf{u}}^{A,0}) \right|\!\le\! \frac{8M^{2}}{\epsilon_{l}}\| E_{\mathbf{u}}^{\pi,1} \!\|_{H^{1}(\tau)}^{2} \! +\! \frac{\epsilon_{l}}{8} \| E_{\mathbf{u}}^{A,0} \|_{H^{1}}^{2}\! . \end{array} $$

For the third term, we also follow the idea of tool 5:

$$ \begin{array}{@{}rcl@{}} &&{}2 \sum\limits_{K\in\tau_{h}} \left| a^{K}(E_{\mathbf{u}}^{\pi,{n+1}}-E_{\mathbf{u}}^{\pi,n}, E_{\mathbf{u}}^{A,n}) \right|\\ &&\quad = 2 \sum\limits_{K\in\tau_{h}} \left|a^{K}({\int}_{t^{n}}^{t^{n+1}} \partial_{t} E_{\mathbf{u}}^{\pi}, E_{\mathbf{u}}^{A,n})\right| \\ &&\quad\le 2\sum\limits_{K\in\tau_{h}}M_{K}\| {\int}_{t^{n}}^{t^{n+1}}\partial_{t} E_{\mathbf{u}}^{\pi} \|_{H^{1}(K)}\| E_{\mathbf{u}}^{A,n} \|_{H^{1}(K)} \\ &&\quad\le 2\sum\limits_{K\in\tau_{h}}M_{K}\!\left( {\Delta} t{\int}_{t^{n}}^{t^{n+1}}\| \partial_{t} E_{\mathbf{u}}^{\pi} \|_{H^{1}(K)}^{2}\right)^{\frac{1}{2}} \!\| E_{\mathbf{u}}^{A,n} \|_{H^{1}(K)}\\ &&\quad \le \sum\limits_{K\in\tau_{h}} \frac{8M^{2}}{\epsilon_{r}}{\int}_{t^{n}}^{t^{n+1}}\!\| \partial_{t} E_{\mathbf{u}}^{\pi} \|_{H^{1}(K)}^{2}\! +\! {\Delta} t\frac{\epsilon_{r}}{8}\| E_{\mathbf{u}}^{A,n} \|_{H^{1}(K)}^{2}\\ &&\quad = \frac{8M^{2}}{\epsilon_{r}}{\int}_{t^{n}}^{t^{n+1}}\| \partial_{t} E_{\mathbf{u}}^{\pi} \|_{H^{1}(\tau)}^{2} + {\Delta} t\frac{\epsilon_{r}}{8}\| E_{\mathbf{u}}^{A,n} \|_{H^{1}}^{2}. \end{array} $$

We now apply the same methods to the ah part, denoting \(\tilde M_{K}\) the continuity constant of \({a_{h}^{K}}\) and \(\tilde M = \max _{K} M_{K}\),

$$ \begin{array}{@{}rcl@{}} &&{}2 \sum\limits_{n=1}^{N} {\Delta} t \sum\limits_{K\in\tau_{h}}{a_{h}^{K}}(E_{\mathbf{u}}^{\pi,n}-E_{\mathbf{u}}^{I,n}, D^{-}E_{\mathbf{u}}^{A,n}) \\ &&\quad = 2\sum\limits_{K\in\tau_{h}} {a_{h}^{k}}(E_{\mathbf{u}}^{\pi,N}-E_{\mathbf{u}}^{I,N}, E_{\mathbf{u}}^{A,N}) \\ &&\qquad - 2\sum\limits_{K\in\tau_{h}} {a_{h}^{K}}(E_{\mathbf{u}}^{\pi,1} - E_{\mathbf{u}}^{I,1}, E_{\mathbf{u}}^{A,0}) \\ &&\qquad - 2\sum\limits_{n=1}^{N-1} \sum\limits_{K\in\tau_{h}} {a_{h}^{K}}((E_{\mathbf{u}}^{\pi,n+1} -E_{\mathbf{u}}^{\pi,n}) \\ &&\qquad - (E_{\mathbf{u}}^{I,n+1}-E_{\mathbf{u}}^{I,n}), E_{\mathbf{u}}^{A,n}) \end{array} $$

and we split the errors EI and Eπ

$$ \begin{array}{@{}rcl@{}} &&{}2\!\sum\limits_{K\in\tau_{h}}\! \left| {a_{h}^{K}}(E_{\mathbf{u}}^{\pi,N}\! -\! E_{\mathbf{u}}^{I,N},\! E_{\mathbf{u}}^{A,N}) \right| \le\! \frac{8\tilde M^{2}}{\epsilon_{l}}\| E_{\mathbf{u}}^{\pi,N} \|_{H^{1}(\tau)}^{2}\\ && + \frac{4\tilde M^{2}}{\epsilon_{l}}\| E_{\mathbf{u}}^{I,N} \|_{H^{1}}^{2}+ (\frac{\epsilon_{l}}{8}+\frac{\epsilon_{l}}{4}) \| E_{\mathbf{u}}^{A,N} \|_{H^{1}}^{2},\\ &&{}2 \sum\limits_{K\in\tau_{h}} \left| {a_{h}^{K}}(E_{\mathbf{u}}^{\pi,1} - E_{\mathbf{u}}^{I,1}, E_{\mathbf{u}}^{A,0}) \right| \le \frac{8\tilde M^{2}}{\epsilon_{l}}\| E_{\mathbf{u}}^{\pi,1} \|_{H^{1}(\tau)}^{2}\\ &&{\kern2pt} + \frac{4\tilde M^{2}}{\epsilon_{l}}\| E_{\mathbf{u}}^{I,1} \|_{H^{1}}^{2}+ (\frac{\epsilon_{l}}{8}+\frac{\epsilon_{l}}{4}) \| E_{\mathbf{u}}^{A,0} \|_{H^{1}}^{2},\\ &&{}2\sum\limits_{K\in\tau_{h}} \left|{a_{h}^{K}} (E_{\mathbf{u}}^{\pi,n+1} -E_{\mathbf{u}}^{\pi,n}, E_{\mathbf{u}}^{A,n})\right| \le \frac{8\tilde M^{2}}{\epsilon_{r}}{\int}_{t^{n}}^{t^{n+1}}\| \partial_{t} E_{\mathbf{u}}^{\pi} \|_{H^{1}(\tau)}^{2}\\ &&{\kern2pt}+\frac{\epsilon_{r}}{8} {\Delta} t\| E_{\mathbf{u}}^{A,n} \|_{H^{1}}^{2},\\ &&{}2\sum\limits_{K\in\tau_{h}}\left| {a_{h}^{K}} (E_{\mathbf{u}}^{I,n+1}-E_{\mathbf{u}}^{I,n}, E_{\mathbf{u}}^{A,n})\right|\le \frac{4\tilde M^{2}}{\epsilon_{r}}{\int}_{t^{n}}^{t^{n+1}}\| \partial_{t} E_{\mathbf{u}}^{I} \|_{H^{1}}^{2}\\ &&{\kern2pt}+ \frac{\epsilon_{r}}{4} {\Delta} t\| E_{\mathbf{u}}^{A,n} \|_{H^{1}}^{2}. \end{array} $$

We finally obtain the bound as follows:

$$ \begin{array}{@{}rcl@{}} &&{}\left|2{\Delta} t \sum\limits_{n=1}^{N}B_{2}\right|\\ &&\le \frac{\epsilon_{r}}{2} \sum\limits_{n=1}^{N-1}{\Delta} t\| E_{\mathbf{u}}^{A,n} \|_{H^{1}}^{2} +\frac{\epsilon_{l}}{2} \| E_{\mathbf{u}}^{A,N} \|_{H^{1}}^{2} +\frac{\epsilon_{l}}{2} \| E_{\mathbf{u}}^{A,0} \|_{H^{1}}^{2}\\ &&+4\tilde M^{2}\left( \frac{\| E_{\mathbf{u}}^{I,1} \|_{H^{1}}^{2}}{\epsilon_{l}} + \frac{\| E_{\mathbf{u}}^{I,N} \|_{H^{1}}^{2}}{\epsilon_{l}}+ +\frac{\| \partial_{t} E_{\mathbf{u}}^{I} \|_{L^{2}(0,T; H^{1})}^{2}}{\epsilon_{r}}\right)\\ &&+8(M^{2}\! +\!\tilde M^{2})\!\left( \!\frac{\| E_{\mathbf{u}}^{\pi,1}\! \|_{H^{1}{\kern-.5pt}({\kern-.5pt}\tau{\kern-.5pt})}^{2}}{\epsilon_{l}} \! +\! \frac{\| E_{\mathbf{u}}^{\pi,N}\! \|_{H^{1}{\kern-.5pt}({\kern-.5pt}\tau{\kern-.5pt})}^{2}}{\epsilon_{l}}\! +\! \frac{\| \partial_{t} E_{\mathbf{u}}^{\pi}\! \|_{L^{2}(0,T;H^{1}{\kern-.5pt}({\kern-.5pt}\tau{\kern-.5pt}){\kern-.5pt})}^{2}}{\epsilon_{r}}\!\right)\! . \end{array} $$
$$ \begin{array}{@{}rcl@{}} \bullet {\Delta} t{B_{3}^{n}} &=& {\Delta} t{\int}_{\Omega} c_{0} (D^{-}p^{n} -\partial_{t} p^{n})E_{p}^{A,n}\\ &&+ {\Delta} t{\int}_{\Omega} \alpha\text{div}\left( D^{-}\mathbf{u}^{n}-\partial_{t}\mathbf{u}^{n}\right)E_{p}^{A,n} \end{array} $$

We first use the Taylor’s expansion (tool 3) as follows:

$$ \begin{array}{@{}rcl@{}} {\Delta} t{B_{3}^{n}} &=& {\int}_{\Omega} c_{0} {\int}_{t^{n-1}}^{t^{n}}\partial_{tt}p(s)(t^{n-1}-s)^{2}ds E_{p}^{A,n}\\ &&+{\int}_{\Omega} \alpha\text{div}\left( {\int}_{t^{n-1}}^{t^{n}}\partial_{tt}\mathbf{u}(s)(t^{n-1}-s)^{2}ds\right)E_{p}^{A,n} \end{array} $$

We then follow the idea of the double Cauchy-Schwarz (tool 5), this time using the fact that \({\int }_{t^{n-1}}^{t^{n}} (t^{n-1}-s)^{2} ds = \frac {{\Delta } t^{3}}{3}\). In addition, tool 2 is used to treat the divergence operator. Thus,

$$ \begin{array}{@{}rcl@{}} \left|{\Delta} t{B_{3}^{n}}\right| &\le& c_{0}\| E_{p}^{A,n} \|_{L^{2}}\left( \frac{{\Delta} t^{3}}{3} {\int}_{t_{n-1}}^{t^{n}} \| \partial_{tt}p(s) \|_{L^{2}}^{2} ds\right)^{\frac{1}{2}}\\ &&+ \alpha\| E_{p}^{A,n} \|_{L^{2}}\left( \frac{d{\Delta} t^{3}}{3} {\int}_{t_{n-1}}^{t^{n}} \| \partial_{tt}\mathbf{u}(s) \|_{H^{1}}^{2} ds\right)^{\frac{1}{2}}. \end{array} $$

Following what has been done for the estimate of B1, Young’s inequality is used with \(\epsilon =\frac {1}{4}\) for the last term and \(\epsilon =\frac {\epsilon _{r}}{4}\) for the others:

$$ \begin{array}{@{}rcl@{}} &&{}\left|2{\Delta} t \sum\limits_{n=1}^{N}{B_{3}^{n}}\right|\le \frac{2\epsilon_{r}}{4} \sum\limits_{n=1}^{N-1}{\Delta} t \| E_{p}^{A,n} \|_{L^{2}}^{2} + \frac{2{\Delta} t}{4}\| E_{p}^{A,N} \|_{L^{2}}^{2}\\ &&{\kern3pt} + \frac{4}{3}{\Delta} t^{2}\! \left( {c_{0}^{2}}\frac{\| \partial_{tt}p \|_{L^{2}(0,T; L^{2})}^{2}}{\tilde \epsilon_{r}} + d\alpha^{2}\frac{\| \partial_{tt}\mathbf{u} \|_{L^{2}(0,T; H^{1})}^{2}}{\tilde \epsilon_{r}} \right). \end{array} $$
$$ \bullet {\Delta} t {B_{4}^{n}} = {\Delta} t{\int}_{\Omega} (\mathbf{f}^{{\kern1pt}n}-\mathbf{f}_{h}^{{\kern1pt}n})\cdot D^{-}E_{\mathbf{u}}^{A,n} $$

We assimilate the difference \((\mathbf {f}^{{\kern 1pt}n}-\mathbf {f}_{h}^{{\kern 1pt}n})\) to an interpolation error denoted \(E_{\mathbf {f}}^{I,n}\). Using a partial summation,

$$ \begin{array}{@{}rcl@{}} 2{\kern-.5pt}{\Delta}{\kern-.5pt} t\! \sum\limits_{n=1}^{N} {\int}_{\Omega}\! E_{\mathbf{f}}^{I{\kern-.5pt},n}\!\cdot\! D^{-}\! E_{\mathbf{u}}^{A{\kern-.5pt},n}\! &=&\! 2\! {\int}_{\Omega} E_{\mathbf{f}}^{I,N} E_{\mathbf{u}}^{A,N}\! -\! {\int}_{\Omega} \! 2 E_{\mathbf{f}}^{I,1}\! E_{\mathbf{u}}^{A,0}\\ &&-2\! \sum\limits_{n=1}^{N-1}\! {\int}_{\Omega} \!(E_{\mathbf{f}}^{I{\kern-.5pt},n{\kern-.5pt}+{\kern-.5pt}1}\! -\! E_{\mathbf{f}}^{I{\kern-.5pt},{\kern-.5pt}n})\!\cdot\! E_{\mathbf{u}}^{A{\kern-.5pt},{\kern-.5pt}n}{\kern-.5pt}. \end{array} $$

Using Cauchy-Schwarz and Young inequalities, and treating the third term with tool 5, we have the following:

$$ \begin{array}{@{}rcl@{}} 2\left| {\int}_{\Omega} E_{\mathbf{f}}^{I,N} E_{\mathbf{u}}^{A,N}\right|\!\!&\le&\!\! 2\| E_{\mathbf{f}}^{I,N} \|_{L^{2}}\| E_{\mathbf{u}}^{A,N} \|_{L^{2}}\\ \!\!&\le&\!\!\frac{4}{\epsilon_{l}}\| E_{\mathbf{f}}^{I,N} \|_{L^{2}}^{2} + \frac{\epsilon_{l}}{4}\| E_{\mathbf{u}}^{A,N} \|_{H^{1}}^{2},\\ 2\left| {\int}_{\Omega} E_{\mathbf{f}}^{I,1} E_{\mathbf{u}}^{A,0}\right| \!\!&\le&\!\! 2\| E_{\mathbf{f}}^{I,1} \|_{L^{2}}\| E_{\mathbf{u}}^{A,0} \|_{L^{2}}\\ \!\!&\le&\!\! \frac{4}{\epsilon_{l}}\| E_{\mathbf{f}}^{I,1} \|_{L^{2}}^{2} + \frac{\epsilon_{l}}{4}\| E_{\mathbf{u}}^{A,0} \|_{H^{1}}^{2},\\ 2\left| {\int}_{\Omega} (E_{\mathbf{f}}^{I,n+1} - E_{\mathbf{f}}^{I,n})\cdot E_{\mathbf{u}}^{A,n}\right| \!\!&\le&\!\! \| E_{\mathbf{u}}^{A,n} \|_{L^{2}} \left( {\Delta} t {\int}_{t^{n}}^{t^{n+1}} \| \partial_{t} E_{\mathbf{f}}^{I} \|_{L^{2}}^{2} \right)^{\frac{1}{2}}\\ \!\!&\le&\!\! \frac{4}{\epsilon_{r}}{\int}_{t^{n}}^{t^{n+1}} \| \partial_{t} E_{\mathbf{f}}^{I} \|_{L^{2}}^{2} + \frac {\epsilon_{r}}{4}{\Delta} t\| E_{\mathbf{u}}^{A,n} \|_{H^{1}}^{2}, \end{array} $$

and thus, noticing that \(\| E_{\mathbf {u}}^{A} \|_{L^{2}} \le \| E_{\mathbf {u}}^{A} \|_{H^{1}}\),

$$ \begin{array}{@{}rcl@{}} \left|2{\Delta} t \sum\limits_{n=1}^{N}{B_{4}^{n}}\right| &\le& \frac{\epsilon_{r}}{4} \sum\limits_{n=1}^{N-1} {\Delta} t\| E_{\mathbf{u}}^{A,n} \|_{H^{1}}^{2} + \frac{\epsilon_{l}}{4}\| E_{\mathbf{u}}^{A,N} \|_{H^{1}}^{2}\\ &&+ \frac{4}{\epsilon_{r}}\| \partial_{t} E_{\mathbf{f}}^{I} \|_{L^{2}(0,T; L^{2})}^{2}\\ &&+ \frac{4}{\epsilon_{l}}\left( \| E_{\mathbf{f}}^{I,N} \|_{L^{2}}^{2} + \| E_{\mathbf{f}}^{I,1} \|_{L^{2}}^{2}\right) \\ &&+ \frac{\epsilon_{l}}{4}\| E_{\mathbf{u}}^{A,0} \|_{H^{1}}^{2}. \end{array} $$
$$ \bullet {\Delta} t {B_{5}^{n}} = -{\Delta} t \sum\limits_{K} \sum\limits_{f\subset\partial K} (\overline{F_{Kf}^{n}}-F^{\star,n}_{Kf})E_{p}^{A,n} $$

For this part, we use the consistency of the fluxes \(\overline {F_{Kf}^{n}} = -\overline {F_{Lf}^{n}}\) and \(F^{\star ,n}_{Kf} = -F^{\star ,n}_{Lf}\). This allows to reorganize the double sum in the following way, K standing for any of the two neighboring cells of f,

$$ \begin{array}{@{}rcl@{}} &&{}\sum\limits_{K} \sum\limits_{f\subset\partial K} (\overline{F_{Kf}^{n}}-F^{\star,n}_{Kf})E_{p}^{A,n} \\ &&\quad = \sum\limits_{f \subset \overline {\Omega} \setminus {\Gamma}_{N_{p}}} (\overline{F_{Kf}^{n}}-F^{\star,n}_{Kf})D_{f}(E_{p}^{A,n})\\ &&\quad \le \left( \sum\limits_{f \subset \overline {\Omega} \setminus {\Gamma}_{N_{p}}} T_{f}^{-1}\left|\overline{F_{Kf}^{n}}-F^{\star,n}_{Kf}\right|^{2}\right)^{\frac{1}{2}} \\&&\qquad \times\left( \sum\limits_{f \subset \overline {\Omega} \setminus {\Gamma}_{N_{p}}} T_{f}D_{f}(E_{p}^{A,n})^{2}\right)^{\frac{1}{2}} \quad\text{(CS)}\\ &&\quad \le \frac{| E_{p}^{A,n} |_{1,\tau}^{2}}{2} +\sum\limits_{f \subset \overline {\Omega} \setminus {\Gamma}_{N_{p}}} \frac{\left|\overline{F_{Kf}^{n}}-F^{\star,n}_{Kf}\right|^{2}}{2T_{f}} \quad\text{(Young)} \end{array} $$

and thus,

$$ \begin{array}{@{}rcl@{}} \left|2{\Delta} t \sum\limits_{n=1}^{N}{B_{5}^{n}}\right| &\le& \sum\limits_{n=1}^{N} {\Delta} t| E_{p}^{A,n} |_{1,\tau}^{2}\\ &&+\sum\limits_{n=1}^{N} {\Delta} t\sum\limits_{f \subset \overline {\Omega} \setminus {\Gamma}_{N_{p}}} \frac{\left|\overline{F_{Kf}^{n}}-F^{\star,n}_{Kf}\right|^{2}}{T_{f}}.\hfill \end{array} $$
$$ \bullet {\Delta} t {B_{6}^{n}} = -{\Delta} tc_{0}{\int}_{\Omega} E_{p}^{A,n} D^{-}E_{p}^{I,n} $$

We use tool 5 and tool 1 to write:

$$ \begin{array}{@{}rcl@{}} \left| {\Delta} t {B_{6}^{n}} \right| &\le& c_{0} \| E_{p}^{A,n} \|_{L^{2}}\left( {\Delta} t {\int}_{t^{n-1}}^{t^{n}}\| \partial_{t} {E_{p}^{I}} \|_{L^{2}}^{2}\right)^{\frac{1}{2}}\\ &\le& \frac{\epsilon{\Delta} t}{2} \| E_{p}^{A,n} \|_{L^{2}}^{2} + \frac{{c_{0}^{2}}}{2\epsilon}{\int}_{t^{n-1}}^{t^{n}}\| \partial_{t} {E_{p}^{I}} \|_{L^{2}}^{2} \end{array} $$

and we set \(\epsilon = \frac {1}{4}\) for n = N and \(\epsilon =\frac {\epsilon _{r}}{4}\) for the others n leading to the following:

$$ \begin{array}{@{}rcl@{}} \left|2{\Delta} t \sum\limits_{n=1}^{N}{B_{6}^{n}}\right| &\le& \frac{\epsilon_{r}}{4}\sum\limits_{n=1}^{N-1}{\Delta} t\| E_{p}^{A,n} \|_{L^{2}}^{2} +\frac{{\Delta} t}{4}\| E_{p}^{A,N} \|_{L^{2}}^{2} \\ &&+ \frac{4{c_{0}^{2}}}{\tilde \epsilon_{r}} \| \partial_{t} {E_{p}^{I}} \|_{L^{2}(0,T;L^{2})}^{2}. \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coulet, J., Faille, I., Girault, V. et al. A fully coupled scheme using virtual element method and finite volume for poroelasticity. Comput Geosci 24, 381–403 (2020). https://doi.org/10.1007/s10596-019-09831-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-019-09831-w

Keywords

Mathematics Subject Classification (2010)

Navigation