Skip to main content

Performances of the Mixed Virtual Element Method on Complex Grids for Underground Flow

  • Chapter
  • First Online:
Polyhedral Methods in Geosciences

Abstract

The numerical simulation of physical processes in the underground frequently entails challenges related to the geometry and/or data. The former are mainly due to the shape of sedimentary layers and the presence of fractures and faults, while the latter are connected to the properties of the rock matrix which might vary abruptly in space. The development of approximation schemes has recently focused on the overcoming of such difficulties with the objective of obtaining numerical schemes with good approximation properties. In this work we carry out a numerical study on the performance of the Mixed Virtual Element Method (MVEM) for the solution of a single-phase flow model in fractured porous media. This method is able to handle grid cells of polytopal type and treat hybrid dimensional problems. It has been proven to be robust with respect to the variation of the permeability field and of the shape of the elements. Our numerical experiments focus on two test cases that cover several of the aforementioned critical aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Aavatsmark, Interpretation of a two-point flux stencil for skew parallelogram grids. Comput. Geosci. 11(3), 199–206 (2007)

    Article  MathSciNet  Google Scholar 

  2. C. Alboin, J. Jaffré, J.E. Roberts, C. Serres, Modeling fractures as interfaces for flow and transport in porous media, in Fluid Flow and Transport in Porous Media: Mathematical and Numerical Treatment (South Hadley, MA, 2001), vol. 295 of Contemporary Mathematics, pp. 13–24. American Mathematical Society (Providence, RI, 2002)

    Google Scholar 

  3. P.F. Antonietti, L. Formaggia, A. Scotti, M. Verani, N. Verzotti, Mimetic finite difference approximation of flows in fractured porous media. ESAIM: M2AN 50(3), 809–832 (2016)

    Google Scholar 

  4. J. Bear, Dynamics of Fluids in Porous Media (American Elsevier, 1972)

    Google Scholar 

  5. L. Beirão da Veiga, F. Brezzi, L.D. Marini, A. Russo, H(div) and H(curl)-conforming VEM. Numerische Mathematik 133(2), 303–332 (2014)

    Article  Google Scholar 

  6. L. Beirão da Veiga, F. Brezzi, L.D. Marini, A. Russo, The hitchhiker’s guide to the virtual element method. Math. Model. Methods Appl. Sci. 24(08), 1541–1573 (2014)

    Article  MathSciNet  Google Scholar 

  7. L. Beirão da Veiga, F. Brezzi, L.D. Marini, A. Russo, Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM: M2AN 50(3), 727–747 (2016)

    Google Scholar 

  8. L. Beirão da Veiga, C. Lovadina, A. Russo, Stability analysis for the virtual element method. Math. Model. Methods Appl. Sci. 27(13), 2557–2594 (2017)

    Article  MathSciNet  Google Scholar 

  9. M.F. Benedetto, S. Berrone, A. Borio, S. Pieraccini, S. Scialò, A hybrid mortar virtual element method for discrete fracture network simulations. J. Comput. Phys. 306, 148–166 (2016)

    Article  MathSciNet  Google Scholar 

  10. M.F. Benedetto, S. Berrone, S. Pieraccini, S. Scialò, The virtual element method for discrete fracture network simulations. Comput. Methods Appl. Mech. Eng. 280, 135–156 (2014)

    Article  MathSciNet  Google Scholar 

  11. R.L. Berge, Ø.S. Klemetsdal, K.-A. Lie, Unstructured Voronoi grids conforming to lower dimensional objects. Comput. Geosci. 23(1), 169–188 (2019)

    Article  MathSciNet  Google Scholar 

  12. I. Berre, F. Doster, E. Keilegavlen, Flow in fractured porous media: a review of conceptual models and discretization approaches. Transp. Porous Media 130(1), 215–236 (2019)

    Article  MathSciNet  Google Scholar 

  13. D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics (Springer, Berlin Heidelberg, 2013)

    Book  Google Scholar 

  14. D. Boffi, D.A. Di Pietro, Unified formulation and analysis of mixed and primal discontinuous skeletal methods on polytopal meshes. ESAIM: Math. Model. Numer. Anal. 52(1), 1–28 (2018)

    Google Scholar 

  15. W.M. Boon, J.M. Nordbotten, I. Yotov, Robust discretization of flow in fractured porous media. SIAM J. Numer. Anal. 56(4), 2203–2233 (2018)

    Article  MathSciNet  Google Scholar 

  16. A. Botella, B. Lévy, G. Caumon, Indirect unstructured hex-dominant mesh generation using tetrahedra recombination. Comput. Geosci. 20(3), 437–451 (2015)

    Article  MathSciNet  Google Scholar 

  17. K. Brenner, J. Hennicker, R. Masson, P. Samier, Gradient discretization of hybrid-dimensional darcy flow in fractured porous media with discontinuous pressures at matrix-fracture interfaces. IMA J. Numer. Anal. (2016)

    Google Scholar 

  18. F. Brezzi, R.S. Falk, D.L. Marini, Basic principles of mixed virtual element methods. ESAIM: M2AN 48(4), 1227–1240 (2014)

    Google Scholar 

  19. The Computational Geometry Algorithms Library. http://www.cgal.org

  20. F. Chave, D.A. Di Pietro, L. Formaggia, A hybrid high-order method for Darcy flows in fractured porous media. SIAM J. Sci. Comput. 40(2), A1063–A1094 (2018)

    Article  MathSciNet  Google Scholar 

  21. S.-W. Cheng, T.K. Dey, J. Shewchuk, Delaunay Mesh Generation (Chapman and Hall/CRC, 2012)

    Google Scholar 

  22. M.A. Christie, M.J. Blunt, SPE-66599-MS, Chapter Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques (Society of Petroleum Engineers, Houston, Texas, 2001), p. 13

    Google Scholar 

  23. C. D’Angelo, A. Scotti, A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. Math. Model. Numer. Anal. 46(02), 465–489 (2012)

    Article  Google Scholar 

  24. F. Dassi, S. Scacchi, Parallel solvers for virtual element discretizations of elliptic equations in mixed form. Comput. Math. Appl. (2019)

    Google Scholar 

  25. F. Dassi, G. Vacca, Bricks for the mixed high-order virtual element method: projectors and differential operators. Appl. Numer. Math. (2019)

    Google Scholar 

  26. M. Del Pra, A. Fumagalli, A. Scotti, Well posedness of fully coupled fracture/bulk Darcy flow with XFEM. SIAM J. Numer. Anal. 55(2), 785–811 (2017)

    Article  MathSciNet  Google Scholar 

  27. J. Droniou, Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Model. Methods Appl. Sci. 24(08), 1575–1619 (2014)

    Article  MathSciNet  Google Scholar 

  28. J. Droniou, R. Eymard, T. Gallouët, R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Model. Methods Appl. Sci. 20(02), 265–295 (2010)

    Article  MathSciNet  Google Scholar 

  29. L.J. Durlofsky, Upscaling of geocellular models for reservoir flow simulation: a review of recent progress, in 7th International Forum on Reservoir Simulation Bühl/Baden-Baden, Germany, pp. 23–27 (2003)

    Google Scholar 

  30. B. Flemisch, I. Berre, W. Boon, A. Fumagalli, N. Schwenck, A. Scotti, I. Stefansson, A. Tatomir, Benchmarks for single-phase flow in fractured porous media. Adv. Water Resour. 111, 239–258 (2018)

    Google Scholar 

  31. B. Flemisch, A. Fumagalli, A. Scotti, A review of the XFEM-based approximation of flow in fractured porous media, chapter advances in discretization methods, in Advances in Discretization Methods: Discontinuities, Virtual Elements, Fictitious Domain Methods, vol. 12, SEMA SIMAI Springer Series, ed. by G. Ventura, E. Benvenuti (Springer International Publishing, Cham, 2016), pp. 47–76

    Chapter  Google Scholar 

  32. L. Formaggia, A. Fumagalli, A. Scotti, P. Ruffo, A reduced model for Darcy’s problem in networks of fractures. ESAIM: Math. Model. Numer. Anal. 48(7), 1089–1116 (2014)

    Google Scholar 

  33. L. Formaggia, A. Scotti, F. Sottocasa, Analysis of a mimetic finite difference approximation of flows in fractured porous media. ESAIM: M2AN 52(2), 595–630 (2018)

    Google Scholar 

  34. P. Frey, P.L. George, Mesh Generation: Application to Finite Elements (Wiley, 2013)

    Google Scholar 

  35. P.J. Frey, H. Borouchaki, P.-L. George, 3D Delaunay mesh generation coupled with an advancing-front approach. Comput. Methods Appl. Mech. Eng. 157(1–2), 115–131 (1998)

    Article  MathSciNet  Google Scholar 

  36. N. Frih, V. Martin, J.E. Roberts, A. Saâda, Modeling fractures as interfaces with nonmatching grids. Comput. Geosci. 16(4), 1043–1060 (2012)

    Article  Google Scholar 

  37. H.A. Friis, M.G. Edwards, J. Mykkeltveit, Symmetric positive definite flux-continuous full-tensor finite-volume schemes on unstructured cell-centered triangular grids. SIAM J. Sci. Comput. 31(2), 1192–1220 (2009)

    Article  MathSciNet  Google Scholar 

  38. A. Fumagalli, Dual virtual element method in presence of an inclusion. Appl. Math. Lett. 86, 22–29 (2018)

    Article  MathSciNet  Google Scholar 

  39. A. Fumagalli, E. Keilegavlen, Dual virtual element method for discrete fractures networks. Technical report, arXiv:1610.02905 [math.NA] (2017)

  40. A. Fumagalli, E. Keilegavlen, Dual virtual element method for discrete fractures networks. SIAM J. Sci. Comput. 40(1), B228–B258 (2018)

    Article  MathSciNet  Google Scholar 

  41. A. Fumagalli, E. Keilegavlen, Dual virtual element methods for discrete fracture matrix models. Oil Gas Sci. Technol.—Revue d’IFP Energies Nouvelles 74(41), 1–17 (2019)

    Google Scholar 

  42. A. Fumagalli, E. Keilegavlen, S. Scialò, Conforming, non-conforming and non-matching discretization couplings in discrete fracture network simulations. J. Comput. Phys. 376, 694–712 (2019)

    Article  MathSciNet  Google Scholar 

  43. A. Fumagalli, L. Pasquale, S. Zonca, S. Micheletti, An upscaling procedure for fractured reservoirs with embedded grids. Water Resour. Res. 52(8), 6506–6525 (2016)

    Article  Google Scholar 

  44. C. Geuzaine, J.-F. Remacle, Gmsh: a 3D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)

    Article  Google Scholar 

  45. J.E. Jones, P.S. Vassilevski, AMGE based on element agglomeration. SIAM J. Sci. Comput. 23(1), 109–133 (2001)

    Article  MathSciNet  Google Scholar 

  46. E. Keilegavlen, R. Berge, A. Fumagalli, M. Starnoni, I. Stefansson, J. Varela, I. Berre, Porepy: an open-source software for simulation of multiphysics processes in fractured porous media. Technical report, arXiv:1908.09869 [math.NA] (2019)

  47. L. Li, S.H. Lee, Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media. SPE Reserv. Eval. Eng. 11, 750–758 (2008)

    Article  Google Scholar 

  48. V. Martin, J. Jaffré, J.E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005)

    Article  MathSciNet  Google Scholar 

  49. H. Mustapha, A Gabriel-Delaunay triangulation of 2D complex fractured media for multiphase flow simulations. Comput. Geosci. 18(6), 989–1008 (2014)

    Article  Google Scholar 

  50. H. Mustapha, K. Mustapha, A new approach to simulating flow in discrete fracture networks with an optimized mesh. SIAM J. Sci. Comput. 29(4), 1439–1459 (2007)

    Article  MathSciNet  Google Scholar 

  51. J.M. Nordbotten, W. Boon, A. Fumagalli, E. Keilegavlen, Unified approach to discretization of flow in fractured porous media. Comput. Geosci. (2018)

    Google Scholar 

  52. J.M. Nordbotten, M.A. Celia, Geological Storage of \(CO^{2}\): modeling approaches for large-scale simulation (Wiley, 2011)

    Google Scholar 

  53. P. Panfili, A. Cominelli, Simulation of miscible gas injection in a fractured carbonate reservoir using an embedded discrete fracture model, in Abu Dhabi International Petroleum Exhibition and Conference, 10–13 November (Society of Petroleum Engineers, Abu Dhabi, UAE, 2014)

    Google Scholar 

  54. J. Pellerin, A. Botella, F. Bonneau, A. Mazuyer, B. Chauvin, B. Lévy, G. Caumon, RINGMesh: a programming library for developing mesh-based geomodeling applications. Comput. Geosci. 104, 93–100 (2017)

    Article  Google Scholar 

  55. J. Pellerin, B. Lévy, G. Caumon, Toward mixed-element meshing based on restricted Voronoi diagrams. Procedia Eng. 82, 279–290 (2014)

    Article  Google Scholar 

  56. P.-A. Raviart, J.-M. Thomas, A mixed finite element method for second order elliptic problems. Lect. Notes Math. 606, 292–315 (1977)

    Article  MathSciNet  Google Scholar 

  57. J.E. Roberts, J.-M. Thomas, Mixed and hybrid methods, in Handbook of Numerical Analysis, vol. II, Handb. Numer. Anal., II, (North-Holland, Amsterdam, 1991), pp. 523–639

    Google Scholar 

  58. T.H. Sandve, I. Berre, J.M. Nordbotten, An efficient multi-point flux approximation method for discrete fracture-matrix simulations. J. Comput. Phys. 231(9), 3784–3800 (2012)

    Article  MathSciNet  Google Scholar 

  59. J. Schöberl, NETGEN an advancing front 2D/3D-mesh generator based on abstract rules. Comput. Vis. Sci. 1(1), 41–52 (1997)

    Article  Google Scholar 

  60. I. Stefansson, I. Berre, E. Keilegavlen, Finite-volume discretisations for flow in fractured porous media. Transp. Porous Media 124(2), 439–462 (2018)

    Article  MathSciNet  Google Scholar 

  61. U. Trottenberg, C.W. Oosterlee, A. Schüller. Multigrid (Elsevier Academic Press, 2001)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the PorePy development team: Eirik Keilegavlen, Runar Berge, Michele Starnoni, Ivar Stefansson, Jhabriel Varela, Inga Berre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Scotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fumagalli, A., Scotti, A., Formaggia, L. (2021). Performances of the Mixed Virtual Element Method on Complex Grids for Underground Flow. In: Di Pietro, D.A., Formaggia, L., Masson, R. (eds) Polyhedral Methods in Geosciences. SEMA SIMAI Springer Series, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-69363-3_8

Download citation

Publish with us

Policies and ethics