Skip to main content

Advertisement

Log in

From widespread to microendemic: molecular and acoustic analyses show that Ischnocnema guentheri (Amphibia: Brachycephalidae) is endemic to Rio de Janeiro, Brazil

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Many species of tropical amphibians are restricted to very small ranges, and this microendemism coupled with ongoing habitat loss and susceptibility to emerging pathogens imperils the long-term persistence of these species. Incomplete taxonomic and distributional knowledge may obscure conservation assessment, particularly in putatively widespread species that are typically considered to be of Least Concern in Red List assessments, but that in fact may constitute complexes of partly microendemic species. Such is the case in the Steindachner’s Robber Frog, Ischnocnema guentheri which, together with the recently recognized Ischnocnema henselii, is thought to occupy most of the Brazilian Atlantic Forest. To test whether these taxa may constitute a species complex of range-restricted and thus potentially threatened species, we analyzed 160 samples of I. guentheri and/or I. henselii for two molecular markers, 16S rRNA (16S) and recombination activation gene 1 (RAG1). To verify the monophyly of the complex, closely related species were also included in the 16S analysis. Congruent evidence from the molecular data and from analyses of advertisement calls support the existence of six distinct species within the complex: I. guentheri and I. henselii as well as four candidate new species. The lineages are distributed as a mosaic in the Atlantic Forest and are sympatric at some localities without indication of admixture. Their phylogeographical pattern partially agrees with paleo-models for the Atlantic Forest, but also suggests the existence of micro-refugia in less stable areas. I. guentheri, previously considered to be widespread, was found only in its type locality, a reserve within the urban area of Rio de Janeiro city. Although none of the species studied appears highly threatened with extinction, we recommend their IUCN threat status to be re-evaluated carefully for the next comprehensive update of the Red List of Brazil’s amphibians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  • Andreone F, Carpenter AI, Cox N, du Preez L, Freeman K et al (2008) The challenge of conserving amphibian megadiversity in Madagascar. PLoS Biol 6:e118

    Article  PubMed  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  PubMed  CAS  Google Scholar 

  • Becker CG, Fonseca CR, Haddad CFB, Batista RF, Prado PI (2007) Habitat split and the global decline of amphibians. Science 318:1775–1777

    Article  PubMed  CAS  Google Scholar 

  • Bruford MW, Hanotte O, Brookfield JFY, Burke T (1992) Single-locus and multilocus DNA fingerprint. In: Hoelzel AR (ed) Molecular genetic analysis of populations: a practical approach. IRL Press, Oxford, pp 225–270

    Google Scholar 

  • Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic Forest. J Biogeogr 35:1187–1201

    Article  Google Scholar 

  • Carnaval AC, Hickerson MJ, Haddad CF, Rodrigues MT, Moritz C (2009) Stability predicts genetic diversity in the Brazilian Atlantic Forest hotspot. Science 323:785–789

    Article  PubMed  CAS  Google Scholar 

  • Chiari Y, Vences M, Vieites DR, Rabemananjara F, Bora P, Ramilijaona Ravoahangimalala O, Meyer A (2004) New evidence for parallel evolution of colour patterns in Malagasy poison frogs (Mantella). Mol Ecol 13:3763–3774

    Article  PubMed  CAS  Google Scholar 

  • Clemente-Carvalho RB, Klaczko J, Ivan Perez S, Alves AC, Haddad CF, dos Reis SF (2011) Molecular phylogenetic relationships and phenotypic diversity in miniaturized toadlets, genus Brachycephalus (Amphibia: Anura: Brachycephalidae). Mol Phylogenet Evol 61:79–89

    Article  PubMed  Google Scholar 

  • Cochran DM (1955) Frogs of Southeastern Brazil. US. Nat Mus Bull 206:1–423

    Article  Google Scholar 

  • Crawford AJ (2003) Huge populations and old species of Costa Rican and Panamanian dirt frogs inferred from mitochondrial and nuclear gene sequences. Mol Ecol 12:2525–2540

    Article  PubMed  CAS  Google Scholar 

  • Crawford AJ, Smith EN (2005) Cenozoic biogeography and evolution in direct-developing frogs of Central America (Leptodactylidae: Eleutherodactylus) as inferred from a phylogenetic analysis of nuclear and mitochondrial genes. Mol Phylogenet Evol 35:536–555

    Article  PubMed  CAS  Google Scholar 

  • Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85:407–415

    Article  Google Scholar 

  • de Queiroz K (ed) (1998) The general lineage concept of species, species criteria, and the process of speciation: a conceptual unification and terminological recommendations. In: Howard DJ, Berlocher SH. Endless forms: species and speciation and speciation. Oxford University Press, Oxford, pp 57–75

    Google Scholar 

  • de Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886

    Article  PubMed  Google Scholar 

  • Elmer KR, Davila JA, Lougheed SC (2007) Cryptic diversity and deep divergence in an upper Amazonian leaflitter frog, Eleutherodactylus ockendeni. BMC Evol Biol 7:247

    Article  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    CAS  Google Scholar 

  • Fouquet A, Gilles A, Vences M, Marty C, Blanc M, Gemmell NJ (2007) Underestimation of species richness in Neotropical frogs revealed by mtDNA analyses. PLoS ONE 2:e1109

    Article  PubMed  Google Scholar 

  • Freitas SR, Neves CL, Chernicharo P (2006) Tijuca National Park: two Pioneering restorationist initiatives in Atlantic Forest in Southeastern Brazil. Braz J Biol 66:975–982

    Article  PubMed  CAS  Google Scholar 

  • Funk WC, Caminer M, Ron SR (2012) High levels of cryptic species diversity uncovered in Amazonian frogs. Proc Biol Sci 279:1806–1814

    Article  PubMed  Google Scholar 

  • Giaretta AA, Sawaya RJ, Machado G, Araújo MS, Facure KG et al (1997) Diversity and abundance of litter frogs at altitudinal sites at Serra do Japi, southeastern Brazil. Revi Bras Zool 14:341–346

    Article  Google Scholar 

  • Gordon A, Simondson D, White M, Moilanen A, Bekessy SA (2009) Integrating conservation planning and landuse planning in urban landscapes. Landsc Urban Plan 91:183–194

    Article  Google Scholar 

  • Graham CH, Moritz C, Williams SE (2006) Habitat history improves prediction of biodiversity in rainforest fauna. Proc Natl Acad Sci USA 103:632–636

    Article  PubMed  CAS  Google Scholar 

  • Grazziotin FG, Monzel M, Echeverrigaray S, Bonatto SL (2006) Phylogeography of the Bothrops jararaca complex (Serpentes: Viperidae): past fragmentation and island colonization in the Brazilian Atlantic Forest. Mol Ecol 13:3969–3982

    Article  Google Scholar 

  • Häupl M, Tiedeman F, Grillitsch H (1994) Katalog der Typen der Herpetologischen Sammlung nach dem Stand vom 1. Jänner 1994. Teil I: Amphibia. Kataloge wiss Samml naturh Mus Wien. Vertebrata 9:1–46

    Google Scholar 

  • Hegdes SB, Duellman WE, Heinicke MP (2008) New World direct-developing frogs (Anura: Terrarana): molecular phylogeny, classification, biogeography, and conservation. Zootaxa 1737:1–182

    Google Scholar 

  • Heyer RW (1984) Variation, systematics, and zoogeography of Eleutherodactylus guentheri and closely related species (Amphibia: Anura: Leptodactylidae). Smithson Contrib Zool 402:1–42

    Article  Google Scholar 

  • Heyer RW, Rand SA, Cruz CAG, Peixoto OL, Nelson CE (1990) Frogs of Boracéia. Arq Zool S Paulo 31(4):231–410

    Google Scholar 

  • IUCN (2011). IUCN Red List of threatened species. Version 2011.2. www.iucnredlist.org. Accesses on 25 March 2012

  • IUCN (World Conservation Union) (2001) IUCN red list categories. Version 3.1. Species Survival Commission, IUCN, Cambridge

  • James H (1999) Why are there so many new amphibian species when amphibians are declining? Trends Ecol Evol 14:7–8

    Article  Google Scholar 

  • Köhler J, Vieites DR, Bonett RM, García FH, Glaw F et al (2005) New amphibians and global conservation: a boost in species discoveries in a highly endangered vertebrate group. Bioscience 55:693–696

    Article  Google Scholar 

  • Kwet A, Solé M (2005) Validation of Hylodes henselii Peters, 1870, from Southern Brazil and description of acoustic variation in Eleutherodactylus guentheri (Anura: Leptodactylidae). J Herpetol 39:521–532

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Löytynoja A, Milinkovitch MC (2001) SOAP, cleaning multiple alignments from unstable blocks. Bioinformatics 17:573–574

    Article  PubMed  Google Scholar 

  • Lucas LM, Cunha SB (2007) Rede de drenagem urbana em área tropical: mudanças na morfologia do canal e níveis de poluição das águas–Rio dos Macacos–Rio de Janeiro—RJ. GEOUSP Espaço e Tempo 22:39–64

    Google Scholar 

  • Meegaskumbura M, Bossuyt F, Pethiyagoda R, Manamendra-Arachchi K, Bahir M et al (2002) Sri Lanka: an amphibian hot spot. Science 298:379

    Article  PubMed  CAS  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Newman CE, Feinberg JA, Rissler LJ, Burger J, Shaffer HB (2012) A new species of leopard frog (Anura: Ranidae) from the urban northeastern US. Mol Phylogenet Evol 63:445–455

    Article  PubMed  Google Scholar 

  • Padial AA, De la Riva I (2009) Integrative taxonomy reveals cryptic Amazonian species of Pristimantis (Anura: Strabomantidae). Zool J Linn Soc 155:97–122

    Article  Google Scholar 

  • Padial JM, Miralles A, De la Riva I, Vences M (2010) The integrative future of taxonomy. Front Zool 7:16

    Article  PubMed  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Rambaut A, Drummond AJ (2009) Tracer v1.4 http://beast.bio.ed.ac.uk/Tracer

  • Rodriguez A, Vences M, Nevado B, Machordom A, Verheyen E (2010) Biogeographic origin and radiation of Cuban Eleutherodactylus frogs of the auriculatus species group, inferred from mitochondrial and nuclear gene sequences. Mol Phylogenet Evol 54:179–186

    Article  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Steindachner F (1864) Batrachologische Mittheilungen. Verh K K Zool -Bot Ges Wien 14:239–288

  • Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76:449–462

    Article  PubMed  CAS  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  PubMed  CAS  Google Scholar 

  • Streicher JW, Crawford AJ, Edwards CW (2009) Multilocus molecular phylogenetic analysis of the montane Craugastor podiciferus species complex (Anura: Craugastoridae) in Isthmian Central America. Mol Phylogenet Evol 53:620–630

    Article  PubMed  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues AS et al (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Thomé MT, Zamudio KR, Giovanelli JG, Haddad CF, Baldissera FA Jr, Alexandrino J (2010) Phylogeography of endemic toads and post-Pliocene persistence of the Brazilian Atlantic Forest. Mol Phylogenet Evol 55:1018–1031

    Article  PubMed  Google Scholar 

  • Velo-Anton G, Burrowes PA, Joglar RL, Martinez-Solano I, Beard KH, Parra-Olea G (2007) Phylogenetic study of Eleutherodactylus coqui (Anura: Leptodactylidae) reveals deep genetic fragmentation in Puerto Rico and pinpoints origins of Hawaiian populations. Mol Phylogenet Evol 45:716–728

    Article  PubMed  CAS  Google Scholar 

  • Vences M, Wake DB (2007) Speciation, species boundaries and phylogeography of amphibians. In: Heatwole H (ed) Amphibian biology, vol 7. Surrey Beatty & Sons PTY limited, Chipping Norton, pp 2613–2671

    Google Scholar 

  • Vieites DR, Wollenberg KC, Andreone F, Köhler J, Glaw F, Vences M (2009) Vast underestimation of Madagascar’s biodiversity evidenced by an integrative amphibian inventory. Proc Natl Acad Sci USA 106:8267–8272

    Article  PubMed  CAS  Google Scholar 

  • Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world amphibians. Proc Natl Acad Sci USA 105:11466–11473

    Article  PubMed  CAS  Google Scholar 

  • Wang IJ, Crawford AJ, Bermingham E (2008) Phylogeography of the Pygmy Rain Frog (Pristimantis ridens) across the lowland wet forests of isthmian Central America. Mol Phylogenet Evol 47:992–1004

    Article  PubMed  CAS  Google Scholar 

  • Wollenberg KC, Vieites DR, van der Meijden A, Glaw F, Cannatella DC, Vences M (2008) Patterns of endemism and species richness in Malagasy cophyline frogs support a key role of mountainous areas for speciation. Evolution 62:1890–1907

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to numerous friends and colleagues who provided samples and/or information. They are in debit with Gláucia Maria Funk Pontes, Diego Baldo, José Pombal Jr., Miguel T. U. Rodrigues, Hussan Zaher and Vivian Trevine who collected and/or provided samples. They thank Maria Tereza Thomé, Tuliana Brunes and João Paulo Soares de Cortes for helping during field work; Mariana Lyra for helping with sample management and shipping logistics; Meike Kondermann and Gabi Keunecke for helping with laboratory procedures. They also thank the two anonymous reviewers who provided valuable suggestions. MG was supported by a Ph.D. scholarship of the Katholischer Akademischer Ausländer-Dienst—KAAD. CC was supported by post-doctoral fellowships Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP and Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior/Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro—CAPES/FAPERJ. CFBH acknowledges support by Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq. MV acknowledges support by the Deutsche Forschungsgemeinschaft (grant VE247/7-1). Collection permits were granted by Instituto Chico Mendes – ICMBio to MG (21710-2), CC (14846-3; 20768ß-1) and CFBH (22511-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Gehara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10592_2013_488_MOESM1_ESM.pdf

List of all samples analyzed in this study with respective tissue and voucher specimen numbers, and species / candidate species assignment, as well as haplotypes numbers identified in the RAG1 analysis as in Fig. 2 (see fig S1 for an additional network showing haplotype numbers), and GenBank accession numbers. na indicates those individuals from which only tissue samples had been taken. Asterisks indicate those individuals from which advertisement calls were analyzed. Supplementary material 1 (PDF 24 kb)

10592_2013_488_MOESM2_ESM.tif

Nuclear RAG1 median-joining haplotype network. Colors of the haplotypes are assigned based on the grouping of samples in major mitochondrial clades (Fig 1). Branch lengths are proportional to the number of mutational steps which are shown only in branches with more than one mutational step. Numbers of haplotypes are shown according to Table S1. Supplementary material 2 (TIFF 4,830 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gehara, M., Canedo, C., Haddad, C.F.B. et al. From widespread to microendemic: molecular and acoustic analyses show that Ischnocnema guentheri (Amphibia: Brachycephalidae) is endemic to Rio de Janeiro, Brazil. Conserv Genet 14, 973–982 (2013). https://doi.org/10.1007/s10592-013-0488-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-013-0488-5

Keywords

Navigation