Skip to main content

Advertisement

Log in

Genetic diversity, population genetic structure and demographic history of Przewalski’s gazelle (Procapra przewalskii): implications for conservation

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The Przewalski’s gazelle (Procapra przewalskii) is one of the most endangered antelope species in the world. It is endemic to China and is a flagship species in the eastern part of the Qinghai–Tibet plateau. To establish effective conservation measures on this species, genetic information such as genetic structure is needed. However, there has not been a comprehensive genetic assessment on this gazelle using nuclear DNA markers yet. Here, we employed 13 microsatellite loci to investigate genetic diversity, population genetic structure and demographic history of Przewalski’s gazelle using noninvasive samples of 169 wild gazelles collected from nine populations. A total of 76 alleles were detected from the entire samples, mean allele number was 5.85, and overall H O and H E were 0.525 and 0.552, respectively. Structure and GENELAND analyses found six genetic groups in the nine populations. Between the inferred genetic groups, significant genetic differentiation and low migration rates were detected. Demographic analyses indicated that Przewalski’s gazelle experienced genetic bottleneck and severe population decline, with the ancestral effective population size reducing to less than one percent. Based on the results of this study, we provide several conservation recommendations for Przewalski’s gazelle, such as six management units, periodic monitoring and special conservation consideration on the Qiejitan population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arctander P, Kat PW, Aman RA, Siegismund HR (1996) Extreme genetic differences among populations of Gazella granti, Grant’s gazelle, in Kenya. Heredity 76:465–475

    Article  PubMed  CAS  Google Scholar 

  • Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics 153:2013–2029

    PubMed  CAS  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.03, logiciel sous WindowsTM pour la génétique des populations. Laboratoire génome et populations. Université de Montpellier II, Montpellier, France

    Google Scholar 

  • Broquet T, Petit E (2004) Quantifying genotyping errors in noninvasive population genetics. Mol Ecol 13:3601–3608

    Article  PubMed  CAS  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170

    Article  PubMed  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform online 1:47–50

    CAS  Google Scholar 

  • Frankel OH (1974) Genetic conservation: our evolutionary responsibility. Genetics 78:53–65

    PubMed  CAS  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  • Frankham R, Ballou JD, Broscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Gangcha County Chronicles Compilation Committee (1998) Gangcha County Chronicles. Shanxi People’s Press, X’ian

    Google Scholar 

  • Goldstein DB, Schlötterer C (1999) Microsatellites: evolution and applications. Oxford University Press, Oxford

    Google Scholar 

  • Gonghe County Chronicles Compilation Committee (1991) Gonghe County Chronicles. Qinghai People’s Press, Xining

    Google Scholar 

  • Goudet J (2002) FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9.3.2. Available at: http://www2.unil.ch/popgen/softwares/fstat.htm

  • Guillot G, Mortier F, Estoup A (2005) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5:712–715

    Article  CAS  Google Scholar 

  • Haiyan County Chronicles Compilation Committee (1994) Haiyan county chronicles. Gansu Cultural Press, Lanzhou

    Google Scholar 

  • Hu Y (2005) A study on the characteristics of historical development in Qinghai. J Qinghai Jr Teachers’ Coll (Education Sci) 25:43–47

    Google Scholar 

  • IUCN SSC Antelope Specialist Group (2008) Procapra przewalskii. In: IUCN 2009, IUCN Red List of Threatened Species, Version 2009.1. Available at: http://www.iucnredlist.org

  • Jiang Z (2004) Przewalski’s gazelle. China Forestry Publishing House, Beijing

    Google Scholar 

  • Jiang Z, Feng Z, Wang Z, Chen L, Cai P, Li Y (1995) Historical and current distributions of Przewalski’s gazelle. Acta Theriol Sin 15:241–245

    Google Scholar 

  • Jiang Z, Li D, Wang Z (2000) Population declines of Przewalski’s gazelle around Qinghai Lake, China. Oryx 34:129–135

    Google Scholar 

  • Jiang Z, Li D, Wang Z, Zhu S, Wei W (2001) Population structure of the Przewalski’s gazelle around the Qinghai Lake, China. Acta Zool Sin 47:158–162

    Google Scholar 

  • Jiang Z, Lei R, Han X, Li C (2003) A review on the researches of Przewalski’s gazelle. Chin J Zool 38:129–132

    Google Scholar 

  • Lei R, Jiang Z, Liu B (2001) Group pattern and social segregation in Przewalski’s gazelle (Procapra przewalskii) around Qinghai Lake, China. J Zool 255:175–180

    Article  Google Scholar 

  • Lei R, Hu Z, Jiang Z, Yang W (2003a) Phylogeography and genetic diversity of the critically endangered Przewalski’s gazelle. Anim Conserv 6:361–367

    Article  Google Scholar 

  • Lei R, Jiang Z, Hu Z, Yang W (2003b) Phylogenetic relationships of Chinese antelopes (subfamily Antilopinae) based on mitochondrial ribosomal RNA gene sequences. J Zool 261:227–237

    Article  Google Scholar 

  • Li Z (2008) Competition and coexistence mechanisms of sympatric Przewalski’s gazelle and Tibetan gazelle in upper Buha river, Qinghai–Tibet plateau. PhD thesis. Institute of Zoology, Chinese Academy of Science. Beijing, China

  • Li D, Jiang Z (2002) Population viability analysis for the Przewalski’s gazelle. Russ J Ecol 33:115–120

    Article  Google Scholar 

  • Li D, Jiang Z, Wang Z (1999) Activity patterns and habitat selection of the Przewalski’s gazelle (Procapra Przewalskii) in the Qinghai Lake region. Acta Theriol Sin 19:17–24

    CAS  Google Scholar 

  • Liu B, Jiang Z (2004) Dietary overlap between Przewalski’s gazelle and domestic sheep in the Qinghai Lake region and its implication for rangeland management. J Wildl Manage 68:241–246

    Article  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  PubMed  CAS  Google Scholar 

  • Mallon DP, Kingswood SC (2001) Antelopes. Part 4: North Africa, the Middle East, and Asia. Global Survey and Regional Action Plans. SSC Antelope Specialist Group. IUCN, Gland, Switzerland and Cambridge, UK

    Google Scholar 

  • Maudet C, Luikart G, Dubray D, Von Hardenberg A, Taberlet P (2004) Low genotyping error rates in wild ungulate faeces sampled in winter. Mol Ecol Notes 4:772–775

    Article  CAS  Google Scholar 

  • Mi Y (2007) On the characteristics of national history and national culture in Qinghai. J Qinghai Nationalities Inst (Soc Sci) 33:62–65

    Google Scholar 

  • Moritz C (1994) Defining evolutionary significant units for conservation. Trends Ecol Evol 9:373–375

    Article  PubMed  CAS  Google Scholar 

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) Bottleneck: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Qinghai Province Chronicles Compilation Committee (2001) Qinghai province chronicles. Qinghai People’s Press, Xining

    Google Scholar 

  • R: the R project for statistical computing, http://www.r-project.org/

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rice W (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schlötterer C (2000) Evolutionary dynamics of microsatellite DNA. Chromosoma 109:365–371

    Article  PubMed  Google Scholar 

  • Slate J, Coltman DW, Goodman SJ, MacLean I, Pemberton JM, Williams JL (1998) Microsatellite loci are highly conserved in red deer (Cervus elaphus), sika deer (Cervus nippon) and Soay sheep (Ovis aries). Anim Genet 29:307–315

    Article  PubMed  CAS  Google Scholar 

  • Slate J, van Stijn TC, Anderson RM, McEwan KM, Maqbool NJ, Mathias HC, Bixley MJ, Stevens DR, Molenaar AJ, Beever JE, Galloway SM, Tate ML (2002) A deer (subfamily Cervinae) genetic linkage map and the evolution of ruminant genomes. Genetics 160:1587–1597

    PubMed  CAS  Google Scholar 

  • Storz JF, Beaumont MA (2002) Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution 56:154–166

    PubMed  CAS  Google Scholar 

  • Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, Waits LP, Bouvet J (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189–3194

    Article  PubMed  CAS  Google Scholar 

  • Tianjun County Chronicles Compilation Committee (1995) Tianjun County Chronicles. Gansu Cultural Press, Lanzhou

    Google Scholar 

  • Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Wang Y (2009) Primary discussion on the basic characteristics of history and culture in Qinghai. Qinghai Soc Sci 30:101–107

    Google Scholar 

  • Whittaker JC, Harbord RM, Boxall N, Mackay I, Dawson G, Sibly RM (2003) Likelihood-based estimation of microsatellite mutation rates. Genetics 164:781–787

    PubMed  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations, vol 4. University of Chicago Press, Chicago

    Google Scholar 

  • Ye R, Cai P, Peng M, Lu X, Ma S (2006) The investigation about distribution and population size of Przewalski’s gazelle (Procapra przewalskii) in Qinghai province, China. Acta Theriol Sin 26:373–379

    Google Scholar 

  • You Z, Jiang Z (2005) Courtship and mating behaviors in Przewalski’s gazelle Procapra przewalskii. Acta Zool Sin 51:187–194

    Google Scholar 

  • Zachos FE, Karami M, Ibenouazi Z, Hartl GB, Eckert I, Kirschning J (2010) First genetic analysis of a free-living population of the threatened goitered gazelle (Gazella subgutturosa). Mamm Biol 75:277–282

    Article  Google Scholar 

  • Zhou H, Li D, Zhang Y, Yang T, Liu Y (2007) Genetic diversity of microsatellite DNA loci of Tibetan antelope (chiru, Pantholops hodgsonii) in Hoh Xil National Nature Reserve, Qinghai, China. J Genet Genomics 34:600–607

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Science and Technology Supporting Project, Ministry of Science and Technology, China (2008BAC39B04), the National Natural Sciences Foundation of China (No. 31070469) and the Sir Peter Scott Fund of SSC/IUCN. We thank Zhihe Ang, Ping Lu, Danjia Ang and Zhongqiu Li for their assistance in sample collections. We also thank Yan Zeng, Fangfang Zhang and Chunwang Li for their advice on this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Jiang, Z. Genetic diversity, population genetic structure and demographic history of Przewalski’s gazelle (Procapra przewalskii): implications for conservation. Conserv Genet 12, 1457–1468 (2011). https://doi.org/10.1007/s10592-011-0244-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-011-0244-7

Keywords

Navigation