Skip to main content
Log in

Paternal genotype reconstruction reveals multiple paternity and sex ratios in a breeding population of leatherback turtles (Dermochelys coriacea)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

When animals are difficult to observe while breeding, insights into the mating system may be gained by using molecular techniques. Patterns of extra-pair copulation, multiple paternity and parental genotype analysis may elucidate population characteristics that help improve knowledge of life history while informing management decisions. During the course of a long-term study of leatherback turtles, we assessed the level of multiple paternity in successive clutches for 12 known females nesting at Sandy Point National Wildlife Refuge (St. Croix, U.S. Virgin Islands). We used seven polymorphic microsatellite markers to genotype the females and 1,019 hatchlings representing 38 nests (3–4 clutches from each female). Using deductive genotype reconstruction and GERUD1.0, we identified the 12 mothers and 17 different fathers that were responsible for 38 nests. We found that seven females (58.3%) showed no evidence of multiple paternity in their clutches, while five females (41.7%) had mated with two males each. There was evidence of two fathers (polyandry) in successive clutches for these five females. Multiple fathers didn’t contribute to clutches equally. For clutches laid by an individual female, the primary father was responsible for 53.7 to 85.9% of the hatchlings. We demonstrate the feasibility of using male genotype reconstruction to characterize the male component of this breeding population and to assess operational sex ratios for breeding sea turtles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akçay E, Roughgarden J (2007) Extra-pair paternity in birds: review of the genetic benefits. Evol Ecol Res 9:855–868

    Google Scholar 

  • Bonin A, Bellemain E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    Article  PubMed  CAS  Google Scholar 

  • Bowen BW, Avise JC (1996) Conservation genetics of marine turtles. In: Avise JC, Hamrick JL (eds) Conservation genetics: case histories from nature. Chapman and Hall, New York, pp 190–237

    Google Scholar 

  • Bowen BW, Karl SA (2007) Population genetics and phylogeography of sea turtles. Mol Ecol 16:4886–4907

    Article  PubMed  CAS  Google Scholar 

  • Bowen BW, Nelson WS, Avise JC (1993) A molecular phylogeny for marine turtles—trait mapping, rate assessment, and conservation relevance. Proc Natl Acad Sci USA 90:5574–5577

    Article  PubMed  CAS  Google Scholar 

  • Buresch KM, Hanlon RT, Maxwell MR, Ring S (2001) Microsatellite DNA markers indicate a high frequency of multiple paternity within individual field-collected egg capsules of the squid Loligo pealeii. Mar Ecol-Prog Ser 210:161–165

    Article  Google Scholar 

  • Byrne R, Avise J (2009) Multiple paternity and extra-group fertilizations in a natural population of California grunion (Leuresthes tenuis), a beach-spawning marine fish. Mar Biol 156:1681–1690

    Article  Google Scholar 

  • Carr T, Carr N (1986) Dermochelys coriacea (leatherback sea turtle). Copulation. Herp Rev 17:24–25

    Google Scholar 

  • Chan EH, Liew HC (1995) Incubation temperatures and sex-ratios in the Malaysian leatherback turtle, Dermochelys coriacea. Biol Conserv 74:169–174

    Article  Google Scholar 

  • Chan EH, Liew HC (1996) Decline of the leatherback population in Terengganu, Malaysia, 1956–1995. Chelonian Conserv Biol 2:196–203

    Google Scholar 

  • Chastel O, Weimerskirch H, Jouventin P (1995) Influence of body condition on reproductive decision and reproductive success in the blue petrel. Auk 112:964–972

    Google Scholar 

  • Chesser RK, Baker RJ (1996) Effective sizes and dynamics of uniparentally and diparentally inherited genes. Genetics 144:1225–1235

    PubMed  CAS  Google Scholar 

  • Crim JL, Spotila LD, Spotila JR, O’Connor M, Reina R, Williams CJ, Paladino FV (2002) The leatherback turtle, Dermochelys coriacea, exhibits both polyandry and polygyny. Mol Ecol 11:2097–2106

    Article  PubMed  CAS  Google Scholar 

  • Dutton PH (1995) Molecular evolution of the sea turtles with special reference to the leatherback, Dermochelys coriacea. PhD Dissertation, Texas A&M University, College Station

  • Dutton PH, Frey A (2008) Characterization of polymorphic microsatellite markers for the green turtle (Chelonia mydas). Mol Ecol Resour 9:354–356

    Article  Google Scholar 

  • Dutton PH, McDonald DL, Boulon R (1992) Tagging and nesting research on leatherback sea turtles (Dermochelys coriacea) on Sandy Point, St. Croix, U.S. Virgin Islands. U.S. Fish and Wildlife Service Report # PC-P&NR-287-92

  • Dutton PH, Davis SK, Guerra T, Owens DW (1996) Molecular phylogeny for marine turtles based on sequences of the ND4-leucine tRNA and control regions of mitochondrial DNA. Mol Phylogenet Evol 5:511–521

    Article  PubMed  CAS  Google Scholar 

  • Dutton PH, Bowen BW, Owens DW, Barragan A, Davis SK (1999) Global phylogeography of the leatherback turtle, Dermochelys coriacea. J Zool 248:397–409

    Article  Google Scholar 

  • Dutton PH, Bixby E, Davis SK (2000) Tendency towards single paternity in leatherbacks detected with microsatellites. In: Abreu-Grobois FA, Briseno-Duenas R, Marquez-Millian R, Sarti-Martinez L (eds) Proceedings of the 18th international symposium on sea turtle biology and conservation. NOAA Technical Memorandum NMFS-SEFSC-436. National Marine Fisheries Service, Miami, p 39

  • Dutton DL, Dutton PH, Chaloupka M, Boulon RH (2005) Increase of a Caribbean leatherback turtle Dermochelys coriacea nesting population linked to long-term nest protection. Biol Conserv 126:186–194

    Article  Google Scholar 

  • Edvardsson M, Champion deCrespigny FE, Tregenza T (2007) Mating behaviour: promiscuous mothers have healthier young. Curr Biol 17:R66–R67

    Article  PubMed  CAS  Google Scholar 

  • FitzSimmons NN (1998) Single paternity of clutches and sperm storage in the promiscuous green turtle (Chelonia mydas). Mol Ecol 7:575–584

    Article  PubMed  CAS  Google Scholar 

  • Galbraith DA, White BN, Brooks JR, Boag PT (1993) Multiple paternity in clutches of snapping turtles (Chelydra serpentina) detected using DNA fingerprints. Can J Zool 71:318–324

    Article  Google Scholar 

  • Glen F, Mrosovsky N (2004) Antigua revisited: the impact of climate change on sand and nest temperatures at a hawksbill turtle (Eretmochelys imbricata) nesting beach. Glob Change Biol 10:2036–2045

    Article  Google Scholar 

  • Godfrey MH, Barreto R (1998) Dermochelys coriacea (Leatherback Sea Turtle) copulation. Herp Rev 29(1):40–41

    Google Scholar 

  • Godfrey MH, Barreto R, Mrosovsky N (1996) Estimating past and present sex ratios of sea turtles in Suriname. Can J Zool 74:267–277

    Article  Google Scholar 

  • Godley BJ, Broderick AC, Frauenstein R, Hays GC (2002) Reproductive seasonality and sexual dimorphism in green turtles. Mar Ecol-Prog Ser 226:125–133

    Article  Google Scholar 

  • Griffith SC, Owens IPF, Thuman KA (2008) Extra pair paternity in birds: a review of interspecific variation and adaptive function. Mol Ecol 11:2195–2212

    Article  Google Scholar 

  • Hanotte OT, Burke T, Armour JAL, Jeffreys AJ (1991) Hypervariable minisatellite DNA sequences in the Indian pea fowl Pavo cristatus. Genomics 9:587–597

    Article  PubMed  CAS  Google Scholar 

  • Hawkes LA, Broderick AC, Godfrey MH, Godley BJ (2007) Investigating the potential impacts of climate change on a marine turtle population. Glob Change Biol 13:923–932

    Article  Google Scholar 

  • Hays GC, Fossette S, Katselidis KA, Schofield G, Gravenor MB (2010) Breeding periodicity for male sea turtles, operational sex ratios, and implications in the face of climate change. Conserv Biol 24:1636–1643

    Article  PubMed  Google Scholar 

  • Hyde JR, Kimbrell C, Robertson L, Clifford K, Lynn E, Vetter R (2008) Multiple paternity and maintenance of genetic diversity in the live-bearing rockfishes Sebastes spp. Mar Ecol-Prog Ser 357:245–253

    Article  Google Scholar 

  • Innis MA, Gelfand DH, Sninsky JJ, White TJ (1990) PCR protocols: a guide to methods and applications. Academic Press, San Diego

    Google Scholar 

  • Ireland JS, Broderick AC, Glen F, Godley BJ, Hays GC, Lee PLM, Skibinski DOF (2003) Multiple paternity assessed using microsatellite markers, in green turtle Chelonia mydas (Linnaeus, 1758) of Ascension Island, South Atlantic. J Exp Mar Biol Ecol 291:149–160

    CAS  Google Scholar 

  • James MC, Eckert SA, Myers RA (2005) Migratory and reproductive movements of male leatherback turtles (Dermochelys coriacea). Mar Biol 147:845–853

    Article  Google Scholar 

  • Janzen FJ (1994) Climate change and temperature-dependent sex determination in reptiles. Proc Natl Acad Sci USA 91:7487–7490

    Article  PubMed  CAS  Google Scholar 

  • Jensen MP, Abreu-Grobois FA, Frydenberg J, Loeschcke V (2006) Microsatellites provide insight into contrasting mating patterns in arribada vs. non-arribada olive ridley sea turtle rookeries. Mol Ecol 15:2567–2575

    Article  PubMed  CAS  Google Scholar 

  • Jones AG (2001) GERUD1.0: a computer program for the reconstruction of parental genotypes from progeny arrays using multi-locus DNA data. Mol Ecol Notes 1:215–218

    Article  CAS  Google Scholar 

  • Jones AG, Small CM, Paczolt KA, Ratterman NL (2010) A practical guide to methods of parentage analysis. Mol Ecol Resour 10:6–30

    Article  PubMed  Google Scholar 

  • Jouventin P, Charmantier A, Dubois M-P, Jarne P, Bried J (2007) Extra-pair paternity in the strongly monogamous Wandering Albatross Diomedea exulans has no apparent benefits for females. Ibis 149:67–78

    Article  Google Scholar 

  • Kamel SJ, Mrosovsky N (2006) Deforestation: risk of sex ratio distortion in hawksbill sea turtles. Ecol Appl 16:923–931

    Article  PubMed  Google Scholar 

  • Karl SA (2008) The effect of multiple paternity on the genetically effective size of a population. Mol Ecol 17:3973–3977

    Article  PubMed  Google Scholar 

  • Karl SA, Bowen BW (1999) Evolutionary significant units versus geopolitical taxonomy: molecular systematics of an endangered sea turtle (genus Chelonia). Conserv Biol 13:990–999

    Article  Google Scholar 

  • Keller L, Reeve HK (1995) Why do females mate with multiple males—the sexually selected sperm hypothesis. Adv Stud Behav 24:291–315

    Article  Google Scholar 

  • Kichler K, Holder MT, Davis SK, Marquez MR, Owens DW (1999) Detection of multiple paternity in Kemp’s ridley sea turtle with limited sampling. Mol Ecol 8:819–830

    Article  Google Scholar 

  • Krokene C, Rigstad K, Dale M, Lifjeld JT (1998) The function of extrapair paternity in blue tits and great tits: good genes or fertility insurance? Behav Ecol 9:649–656

    Article  Google Scholar 

  • Lage CR, Petersen CW, Forest D, Barnes D, Kornfield I, Wray C (2008) Evidence of multiple paternity in spiny dogfish (Squalus acanthias) broods based on microsatellite analysis. J Fish Biol 73:2068–2074

    Article  Google Scholar 

  • Lee PLM (2008) Molecular ecology of marine turtles: new approaches and future directions. J Exp Mar Biol Ecol 356:25–42

    Article  CAS  Google Scholar 

  • Lee PLM, Hays GC (2004) Polyandry in a marine turtle: females make the best of a bad job. Proc Natl Acad Sci USA 101:6530–6535

    Article  PubMed  CAS  Google Scholar 

  • Lee Lum L (2005) Beach dynamics and nest distribution of the leatherback turtle (Dermochelys coriacea) at Grande Riviere Beach, Trinidad & Tobago. Rev Biol Trop 53:239–248

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Martinez JL, Moran P, Perez J, De Gaudemar B, Beall E, Garcia-Vazquez E (2000) Multiple paternity increases effective size of southern Atlantic salmon populations. Mol Ecol 9:293–298

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky N, Dutton PH, Whitmore CP (1984) Sex ratios of two species of sea turtle nesting in Suriname. Can J Zool 62:2227–2239

    Article  Google Scholar 

  • Mrosovsky N, Kamel SJ, Diez CE, van Dam RP (2009) Methods of estimating natural sex ratios of sea turtles from incubation temperatures and laboratory data. End Species Res 8:147–155

    Article  Google Scholar 

  • Murie JO (1995) Mating behavior of Columbian ground squirrels. I. Multiple mating by females and multiple paternity. Can J Zool 73:1819–1826

    Article  Google Scholar 

  • Nevoux M, Weimerskirch H, Barbraud C (2007) Environmental variation and experience-related differences in the demography of the long-lived black-browed albatross. J Anim Ecol 76:159–167

    Article  PubMed  Google Scholar 

  • Pearse D, Avise JC (2001) Turtle mating systems: behavior, sperm storage, and genetic paternity. J Hered 92:206–211

    Article  PubMed  CAS  Google Scholar 

  • Pearse DE, Janzen FJ, Avise JC (2002) Multiple paternity, sperm storage, and reproductive success of female and male painted turtles (Chrysemys picta) in nature. Behav Ecol Sociobiol 51:164–171

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (V.1.2): a population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Roden SE, Dutton PH (2011) Isolation and characterization of 14 polymorphic microsatellite loci in the leatherback turtle (Dermochelys coriacea) and cross-species amplification. Conserv Genet Resour 3:49–52

    Article  Google Scholar 

  • Sefc KM, Koblmüller S (2009) Assessing parent numbers from offspring genotypes: the importance of marker polymorphism. J Hered 100:197–205

    Article  PubMed  CAS  Google Scholar 

  • Spotila JR (2004) Sea turtles: a complete guide to their biology, behavior and conservation. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Spotila JR, Reina RD, Steyermark AC, Plotkin PT, Paladino FV (2000) Pacific leatherback turtles face extinction. Nature 405:529–530

    Article  PubMed  CAS  Google Scholar 

  • Steckenreuter A, Pilcher N, Krüger B, Ben J (2010) Male-biased sex ratio of leatherback turtles (Dermochelys coriacea) at Huon Coast, Papua New Guinea. Chelonian Conserv Biol 9:123–128

    Article  Google Scholar 

  • Stewart KR, Sims M, Meylan A, Witherington B, Brost B, Crowder LB (2010) Leatherback nests increasing significantly in Florida, USA; trends assessed over 30 years using multi-level modeling. Ecol Appl. doi:10.1890/09-1838.1

  • Sugg DW, Chesser RK (1994) Effective population sizes with multiple paternity. Genetics 137:1147–1155

    PubMed  CAS  Google Scholar 

  • Theissinger K, FitzSimmons NN, Limpus CJ, Parmenter CJ, Phillott AD (2009) Mating system, multiple paternity and effective population size in the endemic flatback turtle (Natator depressus) in Australia. Conserv Genet 10:329–346

    Article  Google Scholar 

  • Turtle Expert Working Group (2007) An assessment of the leatherback turtle population in the Atlantic Ocean. NOAA Tech. Memo. NMFS‐SEFSC‐555

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Westneat DF, Fredrick PC, Haven Wiley R (1987) The use of genetic markers to estimate the frequency of successful alternative reproductive tactics. Behav Ecol Sociobiol 21:35–45

    Article  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    PubMed  CAS  Google Scholar 

  • Wright S (1938) Size of population and breeding structure in relation to evolution. Science 87:430–431

    Google Scholar 

  • Zbinden JA, Largaider CR, Leippert F, Margaritoulis D, Arlettaz R (2006) High frequency of multiple paternity in the largest rookery of Mediterranean loggerhead sea turtles. Mol Ecol 16:3703–3711

    Article  Google Scholar 

Download references

Acknowledgments

This work was conducted under U.S. Fish and Wildlife Service Special Use Permit #41526-2009-006. We gratefully acknowledge the support and enthusiasm for this project from Claudia Lombard and Mike Evans of the U.S. Fish and Wildlife Service at Sandy Point National Wildlife Refuge. We are indebted to Jeanne and Steve Garner of the West Indies Marine Animal Research and Conservation Service (WIMARCS), along with their staff for monitoring and identifying all nesting females and marking nests during the nesting season. We could not have done this project without their help with field logistics. For field assistance in hatchling collection and sampling we would like to thank Erin LaCasella, Suzanne Roden, Amy Frey, Justin Perrault, Emily Weiss, Amy Semple, Jeremy Smith, Cristin and Roland Gendron, Damon LaCasella, Amy Jue, Tomo Eguchi, and Diana, Emma and Donna Dutton. For assistance at SWFSC (La Jolla) we thank Amy Jue, Amanda Bowman, Vicki Pease, Roy Allen and Tomo Eguchi. John Hyde, Phil Morin, Robin LeRoux and William Perrin of SWFSC provided comments on the draft that improved the quality of the manuscript. Funding was provided by SWFSC. Grant Long of Port Plastics, San Diego, donated essential sampling supplies. This research was performed while the author (krs) held a National Research Council Research Associateship Award at the Southwest Fisheries Science Center. We could not have done this project without tremendous support from Cottages by the Sea (especially Paul Benedict), and Armstrong’s Homemade Ice Cream in Frederiksted had a role to play in our successful field season in 2009. In addition, we sincerely thank the two anonymous reviewers of the paper, as well as our handling editor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly R. Stewart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, K.R., Dutton, P.H. Paternal genotype reconstruction reveals multiple paternity and sex ratios in a breeding population of leatherback turtles (Dermochelys coriacea). Conserv Genet 12, 1101–1113 (2011). https://doi.org/10.1007/s10592-011-0212-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-011-0212-2

Keywords

Navigation