Skip to main content

Advertisement

Log in

Fine-scale genetic structure of an endangered population of the Mormon metalmark butterfly (Apodemia mormo) revealed using AFLPs

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

We investigated the genetic structure and diversity of an endangered Canadian population of the Mormon metalmark butterfly (Apodemia mormo) using, for the first time, amplified fragment length polymorphism (AFLP) markers generated from non-lethal samples of butterfly wing tissue. Based on 326 loci, our analyses show a high degree of spatial genetic structure within the population, indicating limited gene flow, despite a small geographic range (<20 km). We found that geographic distance, particularly measured along valley bottoms, restricts gene flow within this population. However, other potential barriers to movement and genetic exchange were also identified, in particular urban development. Overall, the population exhibited low levels of genetic diversity. Future management should focus on increasing gene flow between the most isolated sub-populations, and through urban areas, by preserving and restoring as many habitat patches as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnold RA, Powell JA (1983) Apodemia mormo langei. In: Ecological studies of six endangered butterflies (Lepidoptera, Lycaenidae): island biogeography, patch dynamics and design of habitat preserves. University of California Press, California, pp 99–126

  • Bensch S, Akesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14:2899–2914

    Article  PubMed  CAS  Google Scholar 

  • Bonin A, Ehrich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16:3737–3758

    Article  PubMed  CAS  Google Scholar 

  • Brattström O, Åkesson S, Bensch S (2010) AFLP reveals cryptic population structure in migratory European red admirals (Vanessa atalanta). Ecol Entomol 35:248–252

    Article  Google Scholar 

  • Cannings S, Cannings R (1995) Rare invertebrates of the south Okanagan. Province of British Columbia, Ministry of Environment, Lands and Parks. http://www.env.gov.bc.ca. Accessed 30 Aug 2010

  • Collier N, Gardner M, Adams M, McMahon CR, Benkendorff K, Mackay DA (2010) Contemporary habitat loss reduces genetic diversity in an ecologically specialized butterfly. J Biogeogr 37:1277–1287

    Article  Google Scholar 

  • Committee on the Status of Endangered Wildlife in Canada (COSEWIC) (2003) COSEWIC assessment and updated status report on the Mormon Metalmark Apodemia mormo in Canada. Ottawa, Canada

  • Dasmahapatra KK, Lacy RC, Amos W (2008) Estimating levels of inbreeding using AFLP markers. Heredity 10:286–295

    Article  Google Scholar 

  • Delaney KS, Riley SPD, Fisher RN (2010) A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates. PLoS ONE 5. doi:10.1371/journal.pone.0012767

  • Dover JW (1991) The conservation of insects on arable farmland. In: Collins NM, Thomas JA (eds) The conservation of insects and their habitats. Academic Press, London, pp 294–315

    Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  PubMed  CAS  Google Scholar 

  • Ehrich D (2006) AFLPDAT: a collection of R functions for convenient handling of AFLP data. Mol Ecol Notes 6:603–604

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Franklin MT, Ritland CE, Myers JH (2010) Spatial and temporal changes in genetic structure of greenhouse and field populations of cabbage looper, Trichoplusia ni. Mol Ecol 19:1122–1133

    Article  PubMed  Google Scholar 

  • Gompert Z, Nice CC, Fordyce JA, Forister ML, Shapiro AM (2006) Identifying units for conservation using molecular systematics: the cautionary tale of the Karner blue butterfly. Mol Ecol 15:1759–1768

    Article  PubMed  CAS  Google Scholar 

  • Guppy CA, Shepard JH (2001) Butterflies of British Columbia: Including Western Alberta, Southern Yukon, the Alaska Panhandle, Washington, Northern Oregon, Northern Idaho, and Northwestern Montana. University of British Columbia Press, Vancouver

    Google Scholar 

  • Guppy CS, Shepard JH, Kondla NG (1994) Butterflies and skippers of conservation concern in British Columbia. Can Field Nat 108:31–40

    Google Scholar 

  • Haig SM, Wagner RS, Forsman ED, Mullins TD (2001) Geographic variation and genetic structure in spotted owls. Conserv Genet 2:25–40

    Article  CAS  Google Scholar 

  • Hamm CA, Aggarwal D, Landis DA (2010) Evaluating the impact of non-lethal DNA sampling on two butterflies, Vanessa cardui and Satyrodes eurydice. J Insect Conserv 14:11–18

    Article  Google Scholar 

  • Herrmann D, Poncet BN, Manel S, Rioux D, Gielly L, Taberlet P, Gugerli F (2010) Selection criteria for scoring amplified fragment length polymorphism (AFLPs) positively affect the reliability of population genetic parameter estimates. Genome 53:302–310

    Article  PubMed  CAS  Google Scholar 

  • Keyghobadi N, Unger KP, Weintraub JD, Fonseca DM (2006) Remnant populations of the regal fritillary (Speyeria idalia) in Pennsylvania: local genetic structure in a high gene flow species. Conserv Genet 7:309–313

    Article  Google Scholar 

  • Keyghobadi N, Crawford LA, Maxwell SA (2009) Successful analysis of AFLPs from non-lethally sampled wing tissues in butterflies. Conserv Genet 10:2021–2024

    Article  CAS  Google Scholar 

  • Koscinski D, Crawford LA, Keller HA, Keyghobadi N (in press) Effects of different methods of non-lethal tissue sampling on butterflies. Ecol Entomol. doi:10.1111/j.1365-2311.2011.01272.x

  • Kronforst MR, Salazar C, Linares M, Gilbert LE (2007) No genomic mosaicism in a putative hybrid butterfly species. Proc R Soc Lond B 274:1255–1264

    Article  Google Scholar 

  • Layberry RA, Hall PW, Lafontaine JD (1998) The butterflies of Canada. University of Toronto Press, Toronto

    Google Scholar 

  • Krumm JT, Hunt TE, Skoda SR, Hein GL, Lee, DJ, Clark PL, Foster JE (2008) Genetic variability of the European corn borer, Ostrinia nubilalis, suggests gene flow between populations in the Midwestern United States. J Insect Sci 8:72. http://www.insectscience.org/8.72. Accessed 30 Aug 2010

  • Leidner AK, Haddad NM (2010) Natural, not urban, barriers define population structure for a coastal endemic butterfly. Conserv Genet 11:2311–2320

    Article  Google Scholar 

  • Lushai G, Fjelsted W, Marcovitch O, Aagaard K, Sherratt TN, Allen JA, Maclean N (2000) Application of molecular techniques to non-lethal tissue samples of endangered butterfly populations (Parnassius apollo L.) in Norway for conservation management. Biol Conserv 94:43–50

    Article  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  PubMed  CAS  Google Scholar 

  • Madsen T, Shine R, Olsson M, Wittzell H (1999) Restoration of an inbred adder population. Nature 402:34–35

    Article  CAS  Google Scholar 

  • Maes D, Van Dyck H (2001) Butterfly diversity loss in Flanders (north Belgium): Europe’s worst case scenario? Biol Conserv 99:263–276

    Article  Google Scholar 

  • Manni F, Guérard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by “Monmonier’s algorithm”. Hum Biol 76:173–190

    Article  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Meglécz E, Anderson SJ, Bourget D, Butcher R, Caldas A, Cassel-Lundhagen A, d’Acier AC, Dawson DA, Faure N, Fauvelot C, Franck P, Harper G, Keyghobadi N, Kluetsch C, Muthulakshmi M, Nagaraju J, Patt A, Péténian F, Silvain JF, Wilcock HR (2007) Microsatellite flanking region similarities among different loci within insect species. Insect Mol Biol 16:175–185

    Article  PubMed  Google Scholar 

  • Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117

    Article  PubMed  CAS  Google Scholar 

  • Millot E, Weimerskirch H, Duchesne P, Bernatchez L (2007) Surviving with low genetic diversity: the case of albatrosses. Proc R Soc Lond B 274:779–787

    Article  Google Scholar 

  • Monmonier M (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 3:245–261

    Google Scholar 

  • New TR (1995) An introduction to invertebrate conservation biology. Oxford University Press, New York

    Google Scholar 

  • Noel S, Ouellet M, Galois P, Lapointe F (2007) Impact of urban fragmentation on the genetic structure of eastern red-backed salamander. Conserv Genet 8:599–606

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Proshek B (2010) Taxonomy and conservation of Apodemia mormo (Lepidoptera: Riodinidae) in North America. M.Sc. thesis, University of Alberta

  • Ralls K, Ballou JD, Rideout BA, Frankham R (2000) Genetic management of chondrodystrophy in the California condor. Anim Conserv 3:145–153

    Article  Google Scholar 

  • Ries L, Debinski DM (2001) Butterfly responses to habitat edges in the highly fragmented prairies of central Iowa. J Anim Ecol 70:840–852

    Article  Google Scholar 

  • Schroeder H, Degen B (2008) Spatial genetic structure in populations of the green oak leaf roller, Tortrix viridana L. (Lepidoptera, Tortricidae). Eur J For Res 127:447–453

    Google Scholar 

  • Schtickzelle N, Baguette M (2003) Behavioural responses to habitat patch boundaries restrict dispersal and generate emigration-patch area relationships in fragmented landscapes. J Anim Ecol 72:533–545

    Article  Google Scholar 

  • Sigaard P, Pertoldi C, Madsen AB, Søgaard B, Loeschcke V (2008) Patterns of genetic variation in isolated populations of the endangered butterfly Euphydryas aurinia. Biol J Linn Soc 95:677–687

    Article  Google Scholar 

  • Takami Y, Koshio C, Ishii MU, Fujii H, Hidaka T, Shimizu IM (2004) Genetic diversity and structure of urban populations of Pieris butterflies assessed using amplified fragment length polymorphism. Mol Ecol 13:245–258

    Article  PubMed  Google Scholar 

  • Timm AE, Geertsema H, Warnich L (2006) Gene flow among Cydia pomonella (Lepidoptera: Tortricidae) geographic and host populations in South Africa. J Econ Entomol 99:341–348

    Article  PubMed  CAS  Google Scholar 

  • Timm AE, Geertsema H, Warnich L (2008) Population genetic structure of Grapholita molesta (Lepidoptera: Tortricidae) in South Africa. Ann Entomol Soc Am 101:197–203

    Article  Google Scholar 

  • Vandergast AG, Lewallen EA, Deas J, Bohonak AJ, Weissman DB, Fisher RN (2009) Loss of genetic connectivity and diversity in urban microreserves in a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus n. sp. “santa monica”). J Insect Conserv 13:329–345

    Article  Google Scholar 

  • Vandewoestijne S, Baguette M (2004) Genetic population structure of the vulnerable bog fritillary butterfly. Hereditas 141:199–206

    Article  PubMed  CAS  Google Scholar 

  • Vekemans X, Beauwens T, Lemaire M, Rodán-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151

    Article  PubMed  CAS  Google Scholar 

  • Vila M, Auger-Rozenberg MA, Goussard F, Lopez-Vaamonde C (2009) Effect of non-lethal sampling on life-history traits of the protected moth Graellsia isabelae (Lepidoptera: Saturniidae). Ecol Entomol 34:356–362

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Whitlock R, Hipperson H, Mannarelli M, Butlin RK, Burke T (2008) An objective, rapid, and reproducible method for scoring AFLP peak-height data that minimizes genotyping error. Mol Ecol Resour 8:725–735

    Article  PubMed  CAS  Google Scholar 

  • Wilson PJ, Grewal S, Lawford ID, Heal JNM, Granacki AG, Pennick D, Theberges MT, Voigt DR, Waddell W, Chambers RE, Paquet PC, Goulet G, Cluff D, White BN (2000) DNA profiles of the eastern Canadian wolf and the red wolf provide evidence for a common evolutionary history independent of the gray wolf. Can J Zool 78:2156–2166

    Article  Google Scholar 

  • Wood BC, Pullin AS (2002) Persistence of species in a fragmented urban landscape: the importance of dispersal ability and habitat availability for grassland butterflies. Biodivers Conserv 11:1451–1468

    Article  Google Scholar 

  • Zhang DX (2004) Lepidopteran microsatellite DNA: redundant but promising. Trends Ecol Evol 19:507–509

    Article  PubMed  Google Scholar 

  • Zhivotovsky L (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank O. Dyer, J. Hobbs, D. St-John, L. Reiss, S. Seddon, and K. White for their field assistance, and J. Donald for help with map construction. We also thank R. Breckels, D. Koscinski, S. Maxwell, G. Rasic and two anonymous reviewers for their helpful advice and expertise regarding analysis and editing of earlier versions of the manuscript. This research was supported by the Natural Sciences and Engineering Research Council of Canada, the Government of Ontario, the University of Western Ontario, Okanagan University College, Environment Research Western, and a partnership of the World Wildlife Fund and Environment Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsay A. Crawford.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crawford, L.A., Desjardins, S. & Keyghobadi, N. Fine-scale genetic structure of an endangered population of the Mormon metalmark butterfly (Apodemia mormo) revealed using AFLPs. Conserv Genet 12, 991–1001 (2011). https://doi.org/10.1007/s10592-011-0202-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-011-0202-4

Keywords

Navigation