Skip to main content

Advertisement

Log in

Consequences for genetic diversity and population performance of introducing continental red deer into the northern distribution range

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

For several centuries, game management has involved translocations of non-native individuals of many species to reinforce local native populations. However, there are few quantitative studies of potentially negative effects on population viability as expected when taxa with different local adaptations hybridise. The European red deer has been subject to particularly many translocations. Around 1900, a total of 17 red deer of Hungarian (Cervus elaphus hippelaphus) and German (C. e. germanicus) origin were introduced onto the island of Otterøya in Norway where few native red deer (C. e. atlanticus) remained (n ~ 13). To assess interbreeding, the present stock on Otterøya and the indigenous Norwegian and Hungarian populations were characterised in 14 microsatellite loci and in the control region of mtDNA. An intermediate level of genetic variation in the Otterøya population and the presence of population specific alleles from both the indigenous Norwegian and the Hungarian population demonstrate that the introduced red deer interbred with the native. Even distributions of one indigenous and one non-indigenous mtDNA haplotype in the Otterøya population and two point estimates of admixture indicate similar genetic contributions from the two parental populations into the hybrid stock. Low numbers of migrants identified with Bayesian assignment tests demonstrate low recent gene flow from Otterøya into the Norwegian mainland population. The Otterøya hybrid stock has grown vastly in numbers during recent decades, suggesting a high population viability. We observed that the body mass of red deer on Otterøya was similar or greater than in adjacent indigenous Norwegian stocks, indicating that population performance has not been reduced in the hybrid stock and that gene flow probably has not had any negative effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahlèn I (1965) Studies on the red deer, Cervus elaphus L. Scandinavia. III. Ecological investigations. Viltrevy 3:177–376

    Google Scholar 

  • Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. TREE 16:613–622

    Google Scholar 

  • Allendorf FW, Leary RF, Hitt NP, Knudsen KL, Lundquist LL, Spruell P (2004) Intercrosses and the US Endangered Species Act: should hybridized populations be included as Westslope cutthroat trout? Cons Biol 18:203–1213

    Article  Google Scholar 

  • Asher GW, Archer JA, Scott IC, O’Neill KT, Ward J, Littlejohn RP (2005) Reproductive performance of pubertal red deer (Cervus elaphus) hinds: effects of genetic introgression of wapiti subspecies on pregnancy rates at 18 months of age. Anim Reprod Sci 90:287–306

    Article  CAS  PubMed  Google Scholar 

  • Barton NH (2001) The role of hybridization in evolution. Mol Ecol 10:551–568

    Article  CAS  PubMed  Google Scholar 

  • Begon M, Harper JL, Townsend CR (1996) Ecology, individuals, populations and communities, 3rd edn. Blackwell Science, Oxford

    Book  Google Scholar 

  • Bertorelle G, Excoffier L (1998) Inferring admixture proportions from molecular data. Mol Biol Evol 15:1298–1311

    Article  CAS  PubMed  Google Scholar 

  • Bhebhe E, Kogi J, Holder DA et al (1994) Caprine microsatellite dinucleotide repeat polymorphism at the SR-CRSP-6, SR-CRSP-7, SR-CRSP-8, SR-CRSP-9 and SR-CRSP-10. Anim Genet 25:203

    Article  CAS  PubMed  Google Scholar 

  • Bishop MD, Kappes SM, Keele JW et al (1994) A genetic linkage map for cattle. Genetics 136:619–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchanan FC, Crawford AM (1993) Ovine microsatellites at the OarFCB11, OarFCB128, OarFCB193, OarFCB226 and OarFCB304 loci. Anim Genet 24:145

    Article  CAS  PubMed  Google Scholar 

  • Burke JM, Arnold ML (2001) Genetics and the fitness of hybrids. Ann Rev Gen 35:31–52

    Article  CAS  Google Scholar 

  • Chakraborty R, Kamboh MI, Nwankwo M, Ferrell RE (1992) Caucasian genes in American blacks: new data. Am J Hum Genet 50:145–155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chikhi L, Bruford MW, Beaumont MA (2001) Estimation of admixture proportions: a likelihood-based approach using Markov chain Monte Carlo. Genetics 158:1347–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collett R (1877) Bemærkninger til Norges pattedyrsfauna (in Norwegian). Nyt Magazin for Naturvidenskaberne 22:93–133

    Google Scholar 

  • Collett R (1909) Hjorten i Norge (Cervus elaphus atlanticus), nogle biologiske meddelelser (in Norwegian). Bergens museums Aarbok 6:9–31

    Google Scholar 

  • Collett R (1912) Norges pattedyr (in Norwegian). H. Aschehoug and Co, Kristiania

    Google Scholar 

  • Coulson TN, Pemberton JM, Albon SD et al (1998) Microsatellites reveal heterosis in red deer. Proc R Soc Lond B 265:489–495

    Article  CAS  Google Scholar 

  • DeYoung RW, Demarais S, Honeycutt RL et al (2003) Genetic consequences of white-tailed deer (Odocoileus virginianus) restoration in Mississippi. Mol Ecol 12:3237–3252

    Article  CAS  PubMed  Google Scholar 

  • Die-Woche (1902) Rochwildtransport nach Norwegen (in German), Berlin, pp 1111–1113

  • Ede AJ, Pierson CA, Crawford AM (1995) Ovine microsatellites at the OarCP9, OarCP16, OarCP20, OarCP21, OarCP23 and OarCP26 loci. Anim Genet 25:129–130

    Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree (Argania spinosa L. Skeels) endemic to Morocco. Theor Appl Genet 92:832–839

    Article  CAS  PubMed  Google Scholar 

  • Endler JA (1992) Genetic heterogeneity and ecology. British Ecological Society 33:315–332

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finsberg O (1934) Verdens nordligste hjortestamme (in Norwegian). NJFF tidskrift 63:104–164

    Google Scholar 

  • Fischer J, Lindenmayer DB (2000) An assessment of the published results of animal relocations. Biol Cons 96:1–11

    Article  Google Scholar 

  • Flagstad O, Roed KH (2003) Refugial origins of reindeer (Rangifer tarandus L.) inferred from mitochondrial DNA sequences. Evolution 57:658–670

    Article  CAS  PubMed  Google Scholar 

  • Forchhammer MC, Stenseth NC, Post E, Langvatn R (1998) Population dynamics of Norwegian red deer: density-dependence and climatic variation. Proc R Soc Lond B 265:341–350

    Article  CAS  Google Scholar 

  • Frankham R (1995) Conservation genetics. Ann Rev Genet 29:305–327

    Article  CAS  PubMed  Google Scholar 

  • Freeland JR (2005) Molecular Ecology. Wiley, Chichester

    Google Scholar 

  • Friis JA (1874) Tilfjelds i ferierne (in Norwegian). Cammermeyer, Christiania

    Google Scholar 

  • Geist V (1998) Deer of the world: their evolution, behaviour, and ecology. Swan Hill Press, UK

    Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices. http://www.unil.ch/izea/softwares/fstat.html

  • Griffith B, Scott JM, Carpenter JW, Reed C (1989) Translocation as a species conservation tool—status and strategy. Science 245:477–480

    Article  CAS  PubMed  Google Scholar 

  • Groves CP, Grubb P (1987) Relationships of living deer. In: Wemmer CM (ed) Proceedings of Biology and management of the Cervidae. Smithsonian Institution Press, Washington

  • Gyllensten U, Ryman N, Reuterwall C, Dratch P (1983) Genetic differentiation in four European subspecies of red deer (Cervus elaphus L.). Heredity 51:561–580

    Article  Google Scholar 

  • Haanes H, Rosef O, Veiberg V, Røed KH (2005) Microsatellites with variation and heredity applicable to parentage and population studies of Norwegian red deer (Cervus elaphus atlanticus). Anim Genet 36:454–455

    Article  CAS  PubMed  Google Scholar 

  • Haanes H, Røed KH, Flagstad Ø, Rosef O (2010) Genetic structure in an expanding cervid population after population reduction. Conserv Genet 11:11–22. doi:10.1007/s10592-008-9781-0

    Article  Google Scholar 

  • Haig SM (1998) Molecular contributions to conservation. Ecology 79:413–425

    Article  Google Scholar 

  • Haigh JC, Hudson RJ (1993) Farming wapiti and red deer. Mosby, St. Louis

    Google Scholar 

  • Hamlin KL, Pac DF, Sime CA, DeSimone RM, Dusek GL (2000) Evaluating the accuracy of ages obtained by two methods for Montana ungulates. J Wildl Manage 64:441–449

    Article  Google Scholar 

  • Hansen MM (2002) Estimating the long-term effects of stocking domesticated trout into wild brown trout (Salmo trutta) populations: an approach using microsatellite DNA analysis of historical and contemporary samples. Mol Ecol 11:1003–1015

    Article  CAS  PubMed  Google Scholar 

  • Hartl GB (1991) The influence of game management on allelic variation in large mammals of Central Europe. Supplemento alle Ricerche de biologia della Selvaggina XVIII:95–108

    Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Hartl GB, Nadlinger K, Apollonio M et al (1995) Extensive mitochondrial-DNA differentiation among European red deer (Cervus-Elaphus) populations—implications for conservation and management. Z Saugetierkd 60:41–52

    Google Scholar 

  • Hartl GB, Zachos F, Nadlinger K (2003) Genetic diversity in European red deer (Cervus elaphus L.): anthropogenic influences on natural populations. CR Biol 326:37–42

    Article  Google Scholar 

  • Hedrick PW (2001) Conservation genetics: where are we now? TREE 16:629–636

    Google Scholar 

  • Hulme DJ, Silk JP, Redwin JM, Barendse W, Beh KJ (1994) Ten polymorphic ovine microsatellites. Anim Genet 25:434–435

    Article  CAS  PubMed  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  CAS  PubMed  Google Scholar 

  • Huxley JS (1931) The relative size of antlers in deer. Proc Zool Soc Lond 1931:819–864

    Google Scholar 

  • Ingebrigtsen O (1924) Hjortens utbredelse i Norge (in Norwegian). Bergens Museums Aarbok 1922–1923 Naturvitensk. Række 6:1–58

    Google Scholar 

  • IPCC (2001) Intergovernmental panel on climate change third assessment report. http://www.ipcc.ch

  • IPCC (2007) Intergovernmental panel on climate change fourth assessment report. http://www.ipcc.ch

  • Jensen AB, Palmer KA, Boomsma JJ, Pedersen BV (2005) Varying degrees of Apis mellifera ligustica introgression in protected populations of the black honeybee, Apis mellifera mellifera, in northwest Europe. Mol Ecol 14:93–106

    Article  PubMed  Google Scholar 

  • Kruckenhauser L, Pinsker W (2004) Microsatellite variation in autochthonous and introduced populations of the Alpine marmot (Marmota marmota) along a European west-east transect. J Zool Syst Evol Res 42:19–26

    Article  Google Scholar 

  • Kuehn R, Schroeder W, Pirchner F, Rottmann O (2003) Genetic diversity, gene flow and drift in Bavarian red deer populations (Cervus elaphus). Conserv Genet 4:157–166

    Article  CAS  Google Scholar 

  • Langella O (2002) POPULATIONS v. 1.2.28 (12/5/2002): a free population genetic software. CNRS UPR9034 v. 1.2.30. http://bioinformatics.org/~tryphon/populations/

  • Langvatn R (1998) Hjortens erobring av Norge (in Norwegian). In: Brox KH (ed) Brennpunkt natur. Tapir, Trondheim, pp 49–71

  • Langvatn R, Loison A (1999) Consequences of harvesting on age structure, sex ratio and population dynamics of red deer Cervus elaphus in central Norway. Wildl Biol 5:213–223

    Article  Google Scholar 

  • Langvatn R, Mysterud A, Stenseth NC, Yoccoz NG (2004) Timing and synchrony of ovulation in red deer constrained by short northern summers. Am Nat 163:763–772

    Article  PubMed  Google Scholar 

  • Latch EK, Harveson LA, King JS, Hobson MD, Rhodes OE (2006) Assessing hybridization in wildlife populations using molecular markers: a case study in wild turkeys. J Wildl Manage 70:485–492

    Article  Google Scholar 

  • Lister A (1984) Evolutionary and ecological origins of British Deer. Proc R Soc Edinb B 82:205–229

    Google Scholar 

  • Lister A (2004) The impact of quaternary ice ages on mammalian evolution. Phil Trans R Soc B 359:221–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Loe LE, Meisingset EL, Mysterud A, Langvatn R, Stenseth NC (2004) Phenotypic and environmental correlates of tooth eruption in red deer (Cervus elaphus). J Zool 262:83–89

    Article  Google Scholar 

  • Loison A, Langvatn R, Solberg EJ (1999) Body mass and winter mortality in red deer calves: disentangling sex and climate effects. Ecography 22:20–30

    Article  Google Scholar 

  • Lønnberg E (1906) On the geographic races of red deer in Scandinavia. Ark Zool 3:1–19

    Google Scholar 

  • Lorenzen ED, Siegismund HR (2004) No suggestion of hybridization between the vulnerable black-faced impala (Aepyceros melampus petersi) and the common impala (A. m. melampus) in Etosha National Park, Namibia. Mol Ecol 13:3007–3019

    Article  CAS  PubMed  Google Scholar 

  • Ludt CJ, Schroeder W, Rottmanm O, Kuehn R (2004) Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Mol Phylogenet Evol 31:1064–1083

    Article  CAS  PubMed  Google Scholar 

  • Matrai K, Szemethy L, Toth P, Katona K, Szekely J (2004) Resource use by red deer in lowland nonnative forests, Hungary. J Wildl Manage 68:879–888

    Article  Google Scholar 

  • Moore SS, Byrne K, Berger KT et al (1994) Characterization of 65 bovine microsatellites. Mamm genome 5:84–90

    Article  CAS  PubMed  Google Scholar 

  • Musani SK, Halbert ND, Redden DT, Allison DB, Derr JN (2006) Marker genotypes and population admixture and their association with body weight, height and relative body mass in United States federal bison herds. Genetics 174:775–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mysterud A, Stenseth NC, Yoccoz NG, Langvatn R, Steinheim G (2001a) Nonlinear effects of large-scale climatic variability on wild and domestic herbivores. Nature 410:1096–1099

    Article  CAS  PubMed  Google Scholar 

  • Mysterud A, Yoccoz NG, Stenseth NC, Langvatn R (2001b) Effects of age, sex, and density on body weight of Norwegian red deer: evidence of density-dependent senescence. Proc R Soc Lond B 268:911–919

    Article  CAS  Google Scholar 

  • Mysterud A, Langvatn R, Yoccoz NG, Stenseth NC (2002) Large-scale habitat variability, delayed density effects and red deer populations in Norway. J Anim Ecol 71:569–580

    Article  Google Scholar 

  • Mysterud A, Meisingset EL, Veiberg V et al (2007) Monitoring population size of red deer: an evaluation of two types of census data from Norway. Wildl Biol 13:285–298

    Article  Google Scholar 

  • Mysterud A, Bonenfant C, Loe LE, Langvatn R, Yoccoz NG, Stenseth NC (2008) The timing of male reproductive effort relative to female ovulation in a capital breeder. J Anim Ecol 77:469–477

    Article  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Book  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol 19:153–170

    Article  CAS  PubMed  Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Pettorelli N, Mysterud A, Yoccoz NG, Langvatn R, Stenseth NC (2005) Importance of climatological downscaling and plant phenology for red deer in heterogeneous landscapes. Proc R Soc Lond B 272:2357–2364

    Google Scholar 

  • Polziehn RO, Strobeck C (2002) A phylogenetic comparison of red deer and wapiti using mitochondrial DNA. Mol Phylogenet Evol 22:342–356

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randi E (2005) Management of wild ungulate populations in Italy: captive-breeding, hybridisation and genetic consequences of translocations. Vet Res Commun 29(Suppl 2):71–75

    Article  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) Genepop version-1.2.—population-genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Ann Rev Ecol Syst 27:83–109

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  PubMed  Google Scholar 

  • Røed KH (1998) Microsatellite variation in Scandinavian Cervidae using primers derived from Bovidae. Hereditas 129:19–25

    Article  PubMed  Google Scholar 

  • Røed KH, Midthjell L (1998) Microsatellites in reindeer, Rangifer tarandus, and their use in other cervids. Mol Ecol 7:1773–1778

    Article  PubMed  Google Scholar 

  • Rosenberg NA, Burke T, Elo K et al (2001) Empirical evaluation of genetic clustering methods using multilocus genotypes from 20 chicken breeds. Genetics 159:699–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin ver.2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

    Google Scholar 

  • Shaw PW, Carvalho GR, Seghers BH, Magurran AE (1992) Genetic consequences of an artificial introduction of Guppies (Poecilia-Reticulata) in N-Trinidad. Proc R Soc Lond B 248:111–116

    Article  Google Scholar 

  • Skog A, Zachos FE, Rueness EK et al (2009) Phylogeography of red deer (Cervus elaphus) in Europe. J Biogeogr 36:66–77

    Article  Google Scholar 

  • Slate J, Kruuk LEB, Marshall TC, Pemberton JM, Clutton-Brock TH (2000) Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). Proc R Soc Lond B 267:1657–1662

    Article  CAS  Google Scholar 

  • Storfer A (1999) Gene flow and endangered species translocations: a topic revisited. Biol Conserv 87:173–180

    Article  Google Scholar 

  • Storfer A, Mech SG, Reudink MW, Ziemba RE, Warren J, Collins JP (2004) Evidence for introgression in the endangered Sonora Tiger Salamander, Ambystoma tigrinum stebbinsi (Lowe). Copeia 4:783–796

    Article  Google Scholar 

  • Strandgaard H, Simonsen V (1993) Genetic differentiation in population of red deer, Cervus elaphus, in Denmark. Hereditas 119:171–177

    Article  CAS  PubMed  Google Scholar 

  • Strickberger MW (1996) Evolution, 2nd edn. Jones and Bartlett Publishers, Boston

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tate ML, Anderson RM, McEwan KM, Goosen GJ, Pearse AJ (1998) Genetic analysis of farmed red deer hybrids. Acta Vet Hung 46:329–340

    CAS  PubMed  Google Scholar 

  • Vernesi C, Crestanello B, Pecchioli E, Tartari D, Caramelli D, Hauffe H, Bertorelle G (2003) The genetic impact of demographic decline and reintroduction in the wild boar (Sus scrofa): a microsatellite analysis. Mol Ecol 12:585–595

    Article  CAS  PubMed  Google Scholar 

  • Vila C, Sundqvist AK, Flagstad O et al (2003) Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proc R Soc Lond B 270:91–97

    Article  Google Scholar 

  • Wang J (2003) Maximum-likelihood estimation of admixture proportions from genetic data. Genetics 164:747–765

    Article  PubMed  PubMed Central  Google Scholar 

  • Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data. Sinauer Associates, Sunderland

    Google Scholar 

  • Welzholz JC, Bürger-Arndt R, Bücking W (2005): Country report—Germany: Working Group 1—Task 1.1. Description of the historical background that has led to the development of particular national Protected Forest Area frameworks. In: Latham J, Frank G, Fahy O, Kirby K, Miller H, Stiven R (eds) COST Action E27, protected forest areas in Europe—analysis and harmonisation (PROFOR): reports of signatory states. Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Vienna, pp 133–157

  • Whitehead GK (1972) Deer of the world. Constable, London

    Google Scholar 

  • Whitehead GK (1993) The Whitehead encyclopaedia of deer. Swan Hill Press, Shrewsbury

    Google Scholar 

  • Wilson GA, Strobeck C, Wu L, Coffin J (1997) Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other artiodactyls. Mol Ecol 6:697–699

    Article  CAS  PubMed  Google Scholar 

  • Wolf CM, Griffith B, Reed C, Temple SA (1996) Avian and mammalian translocations: update and reanalysis of 1987 survey data. Conserv Biol 10:1142–1154

    Article  Google Scholar 

  • Wood S (2006) Generalized additive models: an introduction with R. Boca Raton. Chapman & Hall, UK

    Book  Google Scholar 

  • Yoccoz NG, Mysterud A, Langvatn R, Stenseth NC (2002) Age- and density-dependent reproductive effort in male red deer. Proc R Soc Lond B 269:1523–1528

    Article  Google Scholar 

  • Zachos F, Hartl GB, Apollonio M, Reutershan T (2003) On the phylogeographic origin of the Corsican red deer (Cervus elaphus corsicanus): evidence from microsatellites and mitochondrial DNA. Mamm Biol 68:284–298

    Article  Google Scholar 

  • Zachos F, Althoff C, Steynitz Y, Eckert I, Hartl G (2007) Genetic analysis of an isolated red deer (Cervus elaphus) population showing signs of inbreeding depression. Eur J Wildl Res 53:61–67

    Article  Google Scholar 

Download references

Acknowledgements

For providing samples from Norway we thank the Section for Wildlife Diseases at the Norwegian National Veterinary Institute, M. Pearson, H. Holm, O. Hårstad, Ander Børsstad, S. Aglen and the many hunters that sent us samples. For help sampling Hungarian red deer we acknowledge Professors Làszló Szemethy and Sàndor Csànyi at the Institute for Wildlife Conservation, St Stephens University, Hungary. For aid in the laboratory we are in debt to Liv Midthjell, Turid Vikøren and Astrid Stovner. Associate Professor David Griffiths, Institute of Basic Sciences and Aquatic Medicine at the Norwegian School of Veterinary Sciences, assisted with the native proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hallvard Haanes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 134 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haanes, H., Røed, K.H., Mysterud, A. et al. Consequences for genetic diversity and population performance of introducing continental red deer into the northern distribution range. Conserv Genet 11, 1653–1665 (2010). https://doi.org/10.1007/s10592-010-0048-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-010-0048-1

Keywords

Navigation