Skip to main content
Log in

An evaluation of field and noninvasive genetic methods for estimating Eurasian otter population size

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Successful conservation and management of rare and elusive species requires reliable estimates of population size, but acquisition of such data is often challenging. We compare the two most frequently used methods of assessing abundance of Eurasian otter (Lutra lutra) populations, noninvasive genetic sampling (NGS) based on genotyping of faeces and field surveys using snow tracking. In a 100-km2 oligotrophic otter habitat with linear water bodies, both methods yielded very similar estimates (10–12 individuals). However, in a 100-km2 fishpond area, consisting of a complex network of rivers, fishponds, channels and marshes, genotyping of faeces revealed the presence of a higher number of individuals (46–50 genotypes) than the snow survey (38 individuals). NGS data analysed by capture-mark-recapture (CMR)-based software CAPWIRE provided even higher estimates, being twice the number assessed through snow tracking (76–81 individuals, CI95% = 49–96 and 55–89). Our results suggest that the performance of both NGS and snow tracking is comparable in simple linear habitats, but in complex habitats with very high otter density a combination of genetic and field methods, or CMR analysis using genetic data, is recommended. We emphasise that to obtain reliable estimates using NGS it is necessary to follow strict protocols for detection and elimination of genotyping errors. Based on a literature review and our experience, we suggest improvements that may increase the success rate and efficiency of NGS for otters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams JR, Waits LP (2007) An efficient method for screening faecal DNA genotypes and detecting new individuals and hybrids in the red wolf (Canis rufus) experimental population area. Conserv Genet 8:123–131. doi:10.1007/s10592-006-9154-5

    CAS  Google Scholar 

  • Adams JR, Lucash C, Schutte L, Waits LP (2007) Locating hybrid individuals in the red wolf (Canis rufus) experimental population area using a spatially targeted sampling strategy and faecal DNA genotyping. Mol Ecol 16:1823–1834. doi:10.1111/j.1365-294X.2007.03270.x

    PubMed  Google Scholar 

  • Arnemo JM, Ahlqvist P, Andersen R, Berntsen F, Ericsson G, Odden J, Brunberg S, Segerström P, Swenson JE (2006) Risk of capture-related mortality in large free-ranging mammals: experiences from Scandinavia. Wildl Biol 12:109–113. doi:10.2981/0909-6396(2006)12[109:ROCMIL]2.0.CO;2

    Google Scholar 

  • Arrendal J, Vilà C, Björklund M (2007) Reliability of noninvasive genetic census of otters compared to field censuses. Conserv Genet 8:1097–1107. doi:10.1007/s10592-006-9266-y

    Google Scholar 

  • Bellemain E, Swenson JE, Tallmon D, Brunberg S, Taberlet P (2005) Estimating population size of elusive animals with DNA from hunter-collected feces: four methods for brown bears. Conserv Biol 19:150–161. doi:10.1111/j.1523-1739.2005.00549.x

    Google Scholar 

  • Bellemain E, Nawaz MA, Valentini A, Swenson JE, Taberlet P (2007) Genetic tracking of the brown bear in northern Pakistan and implications for conservation. Biol Conserv 134:537–547. doi:10.1016/j.biocon.2006.09.004

    Google Scholar 

  • Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273. doi:10.1111/j.1365-294X.2004.02346.x

    PubMed  CAS  Google Scholar 

  • Broquet T, Petit E (2004) Quantifying genotyping errors in noninvasive population genetics. Mol Ecol 13:3601–3608. doi:10.1111/j.1365-294X.2004.02352.x

    PubMed  CAS  Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL (1993) Distance sampling: estimating abundance of biological populations. Chapman and Hall, New York

    Google Scholar 

  • Chanin P (1985) The natural history of otters. Facts On File Inc., New York

    Google Scholar 

  • Chanin P (2003) Monitoring the otter Lutra lutra. Conserving Natura 2000 Rivers Monitoring Series No. 10, English Nature, Peterborough

  • Conroy JWH, Chanin PRF (2002) The status of the Eurasian otter (Lutra lutra). In: Dulfer R, Conroy JWH, Nel J, Gutleb AC (eds) Proceedings VIIth international otter colloquium: otter conservation—an example for a sustainable use of wetlands. IUCN Otter Spec. Group Bull 19A/2002, pp 24–48

  • Conroy JWH, French DD (1987) The use of spraints to monitor populations of otters (Lutra lutra L.). Symp Zool Soc Lond 58:247–262

    Google Scholar 

  • Coxon K, Chanin P, Dallas J, Sykes T (1999) The use of DNA fingerprinting to study population dynamics of otters (Lutra lutra) in Southern Britain: a feasibility study. R&D Technical Report W202, Environment Agency, Bristol, UK

  • Creel S, Spong G, Sands JL, Rotella J, Zeigle J, Joe L, Murphy KM, Smith D (2003) Population size estimation in Yellowstone wolves with error-prone noninvasive microsatellite genotypes. Mol Ecol 12:2003–2009. doi:10.1046/j.1365-294X.2003.01868.x

    PubMed  Google Scholar 

  • Cutler TL, Swann DE (1999) Using remote photography in wildlife ecology: a review. Wildl Soc Bull 27:571–581

    Google Scholar 

  • Dallas JF, Piertney SB (1998) Microsatellite primers for the Eurasian otter. Mol Ecol 7:1248–1251

    PubMed  CAS  Google Scholar 

  • Dallas JF, Bacon PJ, Carss DN, Conroy JWH, Green R, Jefferies DJ, Kruuk H, Marshall F, Piertney SB, Racey PA (1999) Genetic diversity in the Eurasian otter, Lutra lutra, in Scotland. Evidence from microsatellite polymorphism. Biol J Linn Soc Lond 68:73–86. doi:10.1111/j.1095-8312.1999.tb01159.x

    Google Scholar 

  • Dallas JF, Carss DN, Marshall F, Koepfli K-P, Kruuk H, Piertney SB, Bacon PJ (2000) Sex identification of the Eurasian otter Lutra lutra by PCR typing spraints. Conserv Genet 1:181–183. doi:10.1023/A:1026551510861

    CAS  Google Scholar 

  • Dallas JF, Coxon KE, Sykes T, Chanin PRF, Marshall F, Carss DN, Bacon PJ, Piertney SB, Racey PA (2003) Similar estimates of population genetic composition and sex ratio derived from carcasses and faeces of Eurasian otter Lutra lutra. Mol Ecol 12:275–282. doi:10.1046/j.1365-294X.2003.01712.x

    PubMed  CAS  Google Scholar 

  • Deagle BE, Eveson JP, Jarman SN (2006) Quantification of damage in DNA recovered from highly degraded samples – a case study on DNA in faeces. Front Zool 3:11. doi:10.1186/1742-9994-3-11

    PubMed  Google Scholar 

  • Dulfer R, Foerster K, Roche K (1996) Habitat use, home range and behaviour. In: Dulfer R, Roche K (eds) First phase management plan for otters in Třeboň Biosphere Reserve. Nature and Environment 93, Council of Europe Publishing, 1998, pp 24–33

  • Eggert LS, Eggert JA, Woodruff DS (2003) Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana. Mol Ecol 12:1389–1402. doi:10.1046/j.1365-294X.2003.01822.x

    PubMed  CAS  Google Scholar 

  • Erlinge S (1967) Home range of the otter Lutra lutra L. in Southern Sweden. Oikos 18:186–209. doi:10.2307/3565098

    Google Scholar 

  • Fernando P, Vidya TNC, Rajapakse C, Dangolla A, Melnick DJ (2003) Reliable noninvasive genotyping: fantasy or reality? J Hered 94:115–123. doi:10.1093/jhered/esg022

    PubMed  CAS  Google Scholar 

  • Ferrando A, Lecis R, Domingo-Roura X, Ponsà M (2008) Genetic diversity and individual identification of reintroduced otters (Lutra lutra) in north-eastern Spain by DNA genotyping of spraints. Conserv Genet 9:129–139. doi:10.1007/s10592-007-9315-1

    CAS  Google Scholar 

  • Flagstad Ø, Hedmark E, Landa A, Brøseth H, Persson J, Anderson R, Segerström P, Ellegren H (2004) Colonization history and noninvasive monitoring of a reestablished wolverine population. Conserv Biol 18:676–688. doi:10.1111/j.1523-1739.2004.00034.x

    Google Scholar 

  • Foster-Turley P, Macdonald S, Mason C (1990) Otters. An action plan for their conservation. International Union for Conservation of Nature and Natural Resources, Gland

  • Frantz AC, Pope LC, Carpenter PJ, Roper TJ, Wilson GJ, Delahay RJ, Burke T (2003) Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA. Mol Ecol 12:1649–1661. doi:10.1046/j.1365-294X.2003.01848.x

    PubMed  CAS  Google Scholar 

  • Garcia de Leaniz C, Forman DW, Davies S, Thomson A (2006) Non-intrusive monitoring of otters (Lutra lutra) using infrared technology. J Zool (Lond) 270:577–584. doi:10.1111/j.1469-7998.2006.00124.x

    Google Scholar 

  • Garcia DM, Marmontel M, Rosas FW, Santos FR (2007) Conservation genetics of the giant otter (Pteronura brasiliensis (Zimmerman, 1780)) (Carnivora, Mustelidae). Braz J Biol 67:819–827

    PubMed  CAS  Google Scholar 

  • Gese EM (2001) Monitoring of terrestrial carnivore populations. In: Gittlemann JL, Funk SM, Macdonald D, Wayne RK (eds) Carnivore conservation (conservation biology 5). Cambridge University Press, Cambridge, pp 372–396

    Google Scholar 

  • Goossens B, Setchell JM, James SS, Funk SM, Chikhi L, Abulani A, Ancrenaz M, Lackman-Ancrenaz I, Bruford MW (2006) Philopatry and reproductive success in Bornean orang-utans (Pongo pygmaeus). Mol Ecol 15:2577–2588. doi:10.1111/j.1365-294X.2006.02952.x

    PubMed  CAS  Google Scholar 

  • Guter A, Dolev A, Saltz D, Kronfeld-Schor N (2008) Using videotaping to validate the use of spraints as an index of Eurasian otter (Lutra lutra) activity. Ecol Indic 8:462–465. doi:10.1016/j.ecolind.2007.04.009

    Google Scholar 

  • Hájková P, Bryja J, Zemanová B, Hájek B, Roche K, Zima J (2005) Conservation genetics of Eurasian otters (Lutra lutra): non-invasive genetic sampling and microsatellite DNA variability. Book of abstracts. XIX Annual Meeting of the Society for Conservation Biology, Brasília, Brazil, 15–19 July 2005, p 92

  • Hájková P, Zemanová B, Bryja J, Hájek B, Roche K, Tkadlec E, Zima J (2006) Factors affecting success of PCR amplification of microsatellite loci from otter faeces. Mol Ecol Notes 6:559–562. doi:10.1111/j.1471-8286.2006.01269.x

    Google Scholar 

  • Hájková P, Pertoldi C, Zemanová B, Roche K, Hájek B, Bryja J, Zima J (2007) Genetic structure and evidence for recent population decline in Eurasian otter populations in the Czech and Slovak Republics: implications for conservation. J Zool (Lond) 272:1–9. doi:10.1111/j.1469-7998.2006.00259.x

    Google Scholar 

  • Hansen MM, Jacobsen L (1999) Identification of mustelid species: otter (Lutra lutra), American mink (Mustela vison) and polecat (Mustela putorius), by analysis of DNA from faecal samples. J Zool (Lond) 247:177–181. doi:10.1111/j.1469-7998.1999.tb00981.x

    Google Scholar 

  • Hansen H, Ben-David M, McDonald DB (2008) Effects of genotyping protocols on success and errors in identifying individual river otters (Lontra canadensis) from their faeces. Mol Ecol Res 8:282–289. doi:10.1111/j.1471-8286.2007.01992.x

    CAS  Google Scholar 

  • Hedmark E, Ellegren H (2006) A test of the multiplex pre-amplification approach in microsatellite genotyping of wolverine faecal DNA. Conserv Genet 7:289–293. doi:10.1007/s10592-005-9000-1

    CAS  Google Scholar 

  • Hedmark E, Ellegren H (2007) DNA-based monitoring of two newly founded Scandinavian wolverine populations. Conserv Genet 8:843–852. doi:10.1007/s10592-006-9231-9

    CAS  Google Scholar 

  • Hung C-M, Li S-H, Lee L-L (2004) Faecal DNA typing to determine the abundance and spatial organisation of otters (Lutra lutra) along two stream systems in Kinmen. Anim Conserv 7:301–311. doi:10.1017/S1367943004001453

    Google Scholar 

  • Jansman HAH, Chanin PRF, Dallas JF (2001) Monitoring otter populations by DNA typing of spraints. IUCN Otter Spec Group Bull 18:12–19

    Google Scholar 

  • Janssens X (2006) Monitoring and predicting elusive species colonisation. Application to the otter in the Cévennes National Park (France). PhD Thesis, Université catholique de Louvain, Louvain-la-Neuve, Belgium

  • Janssens X, Fontaine MC, Michaux JR, Libois R, de Kermabon J, Defourny P, Baret PV (2008) Genetic pattern of the recent recovery of European otters in southern France. Ecography 31:176–186. doi:10.1111/j.0906-7590.2008.4936.x

    Google Scholar 

  • Kalinowski ST, Taper ML, Creel S (2006) Using DNA from non-invasive samples to identify individuals and census populations: an evidential approach tolerant of genotyping errors. Conserv Genet 7:319–329. doi:10.1007/s10592-005-9024-6

    Google Scholar 

  • Kalz B, Jewgenow K, Fickel J (2006) Structure of an otter (Lutra lutra) population in Germany – results of DNA and hormone analyses from faecal samples. Mamm Biol 71:321–335. doi:10.1016/j.mambio.2006.02.010

    Google Scholar 

  • Karanth KU (1995) Estimating tiger Panthera tigris populations from camera-trap data using capture-recapture models. Biol Conserv 71:333–338. doi:10.1016/0006-3207(94)00057-W

    Google Scholar 

  • Kendall KC, Metzgar LH, Patterson DA, Steele BM (1992) Power of sign survey to monitor population trends. Ecol Appl 2:422–430. doi:10.2307/1941877

    Google Scholar 

  • Koepfli K-P, Kanchanasaka B, Sasaki H, Jacques H, Louie KDY, Hoai T, Dang NX, Geffen E, Gutleb A, Han S, Heggberget TM, LaFontaine L, Lee H, Melisch R, Ruiz-Olmo J, Santos-Reis M, Sidorovich VE, Stubbe M, Wayne RK (2008) Establishing the foundation for an applied molecular taxonomy of otters in Southeast Asia. Conserv Genet 9:1589–1604. doi:10.1007/s10592-007-9498-5

    Google Scholar 

  • Kohn MH, Wayne RK (1997) Facts from feces revisited. Trends Ecol Evol 12:223–227. doi:10.1016/S0169-5347(97)01050-1

    Google Scholar 

  • Kranz A (2000) Otters (Lutra lutra) increasing in Central Europe: from the threat of extinction to locally perceived overpopulation? Mammalia 64:357–368

    Article  Google Scholar 

  • Kranz A, Knollseisen M (1998) How many otters live ‘here’? A discussion about counting otters. BOKU-Rep Wildl Res Game Manage 14:120–125

    Google Scholar 

  • Kruuk H (1992) Scent marking by otters (Lutra lutra): signalling the use of resources. Behav Ecol 3:133–140. doi:10.1093/beheco/3.2.133

    Google Scholar 

  • Kruuk H (1995) Wild otters. Predation and populations. Oxford University Press, Oxford

    Google Scholar 

  • Kruuk H (2006) Otters: ecology, behaviour, and conservation. Oxford University Press, New York

    Google Scholar 

  • Kruuk H, Moorhouse A, Conroy JWH, Durbin L, Frear S (1989) An estimate of numbers and habitat preference of otters Lutra lutra in Shetland, UK. Biol Conserv 49:241–254. doi:10.1016/0006-3207(89)90046-3

    Google Scholar 

  • Kruuk H, Carrs DN, Conroy JWH, Durbin L (1993) Otter (Lutra lutra L.) numbers and fish productivity in rivers in N.E. Scotland. Symp Zool Soc Lond 65:171–191

    Google Scholar 

  • Lampa S, Gruber B, Henle K, Hoehn M (2008) An optimisation approach to increase DNA amplification success of otter faeces. Conserv Genet 9:201–210. doi:10.1007/s10592-007-9328-9

    CAS  Google Scholar 

  • Lanszki J, Hidas A, Szentes K, Révay T, Lehoczky S, Weiss S (2008) Relative spraint density and genetic structure of otter (Lutra lutra) along the Drava River in Hungary. Mamm Biol 73:40–47. doi:10.1016/j.mambio.2007.08.005

    Google Scholar 

  • Lucchini V, Fabri E, Marucco F, Ricci S, Boitani L, Randi E (2002) Noninvasive molecular tracking of colonizing wolf (Canis lupus) packs in the western Italian Alps. Mol Ecol 11:857–868. doi:10.1046/j.1365-294X.2002.01489.x

    PubMed  CAS  Google Scholar 

  • Mason CF, Macdonald SM (2004) Growth in otter (Lutra lutra) populations in the UK as shown by long-term monitoring. Ambio 33:148–152. doi:10.1639/0044-7447(2004)033[0148:GIOLLP]2.0.CO;2

    PubMed  Google Scholar 

  • Maudet C, Luikart G, Dubray D, von Hardenberg A, Taberlet P (2004) Low genotyping error rates in wild ungulate faeces sampled in winter. Mol Ecol Notes 4:772–775. doi:10.1111/j.1471-8286.2004.00787.x

    CAS  Google Scholar 

  • McDonald LL (2004) Sampling rare populations. In: Thompson WL (ed) Sampling rare or elusive species: concepts, designs, and techniques for estimating population parameters. Island Press, Washington, DC, pp 11–42

    Google Scholar 

  • McKelvey KS, Schwartz MK (2004) Genetic errors associated with population estimation using non-invasive molecular tagging: problems and new solutions. J Wildl Manage 68:439–448. doi:10.2193/0022-541X(2004)068[0439:GEAWPE]2.0.CO;2

    Google Scholar 

  • McKelvey KS, Schwartz MK (2005) DROPOUT: a program to identify problem loci and samples for noninvasive genetic samples in a capture-mark-recapture framework. Mol Ecol Notes 5:716–718. doi:10.1111/j.1471-8286.2005.01038.x

    CAS  Google Scholar 

  • McKelvey KS, von Kienast J, Aubry KB, Koehler GM, Maletzke BT, Squires JR, Lindquist EL, Loch S, Schwartz MK (2006) DNA analysis of hair and scat collected along snow tracks to document the presence of Canada lynx. Wildl Soc Bull 34:451–455. doi:10.2193/0091-7648(2006)34[451:DAOHAS]2.0.CO;2

    Google Scholar 

  • Miller CR, Joyce P, Waits LP (2005) A new method for estimating the size of small populations from genetic mark-recapture data. Mol Ecol 14:1991–2005. doi:10.1111/j.1365-294X.2005.02577.x

    PubMed  CAS  Google Scholar 

  • Mills LS, Citta JJ, Lair KP, Schwartz MK, Tallmon DA (2000) Estimating animal abundance using noninvasive DNA sampling: promise and pitfalls. Ecol Appl 10:283–294. doi:10.1890/1051-0761(2000)010[0283:EAAUND]2.0.CO;2

    Google Scholar 

  • Morin PA, Chambers KE, Boesch C, Vigilant L (2001) Quantitative polymerase chain reaction analysis of DNA from noninvasive samples for accurate microsatellite genotyping of wild chimpanzees (Pan troglodytes verus). Mol Ecol 10:1835–1844. doi:10.1046/j.0962-1083.2001.01308.x

    PubMed  CAS  Google Scholar 

  • Murphy MA, Kendall KC, Robinson A, Waits LP (2007) The impact of time and field conditions on brown bear (Ursus arctos) faecal DNA amplification. Conserv Genet 8:1219–1224. doi:10.1007/s10592-006-9264-0

    Google Scholar 

  • Nsubuga AM, Robbins MM, Roeder AD, Morin PA, Boesch C, Vigilant L (2004) Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method. Mol Ecol 13:2089–2094. doi:10.1111/j.1365-294X.2004.02207.x

    PubMed  CAS  Google Scholar 

  • Paetkau D (2003) An empirical exploration of data quality in DNA-based population inventories. Mol Ecol 12:1375–1387. doi:10.1046/j.1365-294X.2003.01820.x

    PubMed  CAS  Google Scholar 

  • Paetkau C, Strobeck C (1994) Microsatellite analysis of genetic variation in black bear populations. Mol Ecol 3:489–495. doi:10.1111/j.1365-294X.1994.tb00127.x

    PubMed  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Google Scholar 

  • Petit E, Valière N (2006) Estimating population size with noninvasive capture-mark-recapture data. Conserv Biol 20:1062–1073

    PubMed  Google Scholar 

  • Piggott MP, Bellemain E, Taberlet P, Taylor AC (2004) A multiplex pre-amplification method that significantly improves microsatellite amplification and error rates for faecal DNA in limiting conditions. Conserv Genet 5:417–420. doi:10.1023/B:COGE.0000031138.67958.44

    CAS  Google Scholar 

  • Piggott MP, Banks SC, Stone N, Banffy C, Taylor AC (2006) Estimating population size of endangered brush-tailed rockwallaby (Petrogale penicillata) colonies using faecal DNA. Mol Ecol 15:81–91. doi:10.1111/j.1365-294X.2005.02783.x

    PubMed  CAS  Google Scholar 

  • Poledník L, Poledníková K, Hlaváč V, Beran V (2008) Winter census of otters on six sites in the Czech Republic. Bull Vydra 14:11–21 (in Czech with English summary)

    Google Scholar 

  • Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847–859. doi:10.1038/nrg1707

    PubMed  CAS  Google Scholar 

  • Prigioni C, Remonti L, Balestrieri A (2006a) Otter Lutra lutra movements assessed by genotyped spraints in Southern Italy. Hystrix It J Mamm 17:91–96 (ns)

    Google Scholar 

  • Prigioni C, Remonti L, Balestrieri A, Sgrosso S, Priore G, Mucci N, Randi E (2006b) Estimation of European otter (Lutra lutra) population size by fecal DNA typing in Southern Italy. J Mammal 87:855–858. doi:10.1644/05-MAMM-A-294R1.1

    Google Scholar 

  • Prugh LR, Ritland CE, Arthur SM, Krebs CJ (2005) Monitoring coyote population dynamics by genotyping faeces. Mol Ecol 14:1585–1596. doi:10.1111/j.1365-294X.2005.02533.x

    PubMed  CAS  Google Scholar 

  • Puechmaille SJ, Petit EJ (2007) Empirical evaluation of non-invasive capture-mark-recapture estimation of population size based on a single sampling session. J Appl Ecol 44:843–852. doi:10.1111/j.1365-2664.2007.01321.x

    Google Scholar 

  • Reuther C, Dolch D, Green R, Jahrl J, Jefferies D, Krekemeyer A, Kucerova M, Madsen AB, Romanowski J, Roche K, Ruiz-Olmo J, Teubner J, Trindade A (2000) Surveying and monitoring distribution and population trends of the Eurasian otter (Lutra lutra): guidelines and evaluation of the standard method for surveys as recommended by the European Section of the IUCN/SSC Otter Specialist Group. Habitat 12, Hankensbüttel, Germany

  • Roche K (2001) Sprainting behaviour, diet, and foraging strategy of stters (Lutra lutra L.) in the Třeboň Biosphere Reserve (Czech Republic). PhD thesis, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic

  • Roche K, Roche M (2004) Calculating otter (Lutra lutra) numbers in the Třeboň Biosphere Reserve using snow survey data. In: Roche K (ed) Scientific report of the Czech Otter Project 1998–2004. Czech Otter Foundation Fund, Třeboň, pp 132–145

    Google Scholar 

  • Roon DA, Waits LP, Kendall KC (2005) A simulation test of the effectiveness of several methods for error-checking non-invasive genetic data. Anim Conserv 8:203–215. doi:10.1017/S1367943005001976

    Google Scholar 

  • Ruiz-Olmo J, Saavedra D, Jiménez J (2001) Testing the surveys and visual and track censuses of Eurasian otters (Lutra lutra). J Zool (Lond) 253:359–369. doi:10.1017/S0952836901000334

    Google Scholar 

  • Santini A, Lucchini V, Fabbri E, Randi E (2007) Ageing and environmental factors affect PCR success in wolf (Canis lupus) excremental DNA samples. Mol Ecol Notes 7:955–961. doi:10.1111/j.1471-8286.2007.01829.x

    CAS  Google Scholar 

  • Schütz KE, Ågren E, Amundin M, Röken B, Palme R, Mörner T (2006) Behavioral and physiological responses of trap-induced stress in European badgers. J Wildl Manage 70:884–891. doi:10.2193/0022-541X(2006)70[884:BAPROT]2.0.CO;2

    Google Scholar 

  • Schwartz MK, Pilgrim KL, McKelvey KS, Rivera PT, Ruggiero LF (2007) DNA markers for identifying individual snowshoe hares using field-collected pellets. Northwest Sci 81:316–322

    CAS  Google Scholar 

  • Seber GAF (1982) The estimation of animal abundance, 2nd edn. Macmillan, New York

    Google Scholar 

  • Sidorovich VE (1997) Mustelids in Belarus—evolutionary ecology, demography and interspecific relationships. Zolotoy Uley, Minsk

    Google Scholar 

  • Sidorovich VE, Jedrezejewska B, Jedrezejewski W (1996) Winter distribution and abundance of mustelids and beavers in the river valleys of Bialowieza Primeval Forest. Acta Theriol (Warsz) 41:155–170

    Google Scholar 

  • Šimek L (1997) First estimate of numbers of the otter in the Trebon Biosphere reserve. In: Toman A, Hlavac V (eds) Proceedings 14th Mustelid Colloquium Czech Republic 1995, Praha, pp 81–87

  • Smallwood KS, Fitzhugh EL (1993) A rigorous technique for identifying individual mountain lions (Felis concolor) by their tracks. Biol Conserv 65:51–59. doi:10.1016/0006-3207(93)90196-8

    Google Scholar 

  • Smith DA, Ralls K, Hurt A, Adams B, Parker M, Maldonado JE (2006) Assessing reliability of microsatellite genotypes from kit fox faecal samples using genetic and GIS analyses. Mol Ecol 15:387–406. doi:10.1111/j.1365-294X.2005.02841.x

    PubMed  CAS  Google Scholar 

  • Solberg KH, Bellemain E, Drageset O-M, Taberlet P, Swenson JE (2006) An evaluation of field and non-invasive genetic methods to estimate brown bear (Ursus arctos) population size. Biol Conserv 128:158–168. doi:10.1016/j.biocon.2005.09.025

    Google Scholar 

  • Sulkava R (2006) Ecology of the otter (Lutra lutra) in Central Finland and methods for estimating the densities of populations. PhD thesis, University of Joensuu, Finland

  • Sulkava R (2007) Snow tracking: a relevant method for estimating otter Lutra lutra populations. Wildl Biol 13:208–218. doi:10.2981/0909-6396(2007)13[208:STARMF]2.0.CO;2

    Google Scholar 

  • Taberlet P, Luikart G (1999) Non-invasive genetic sampling and individual identification. Biol J Linn Soc 68:41–55. doi:10.1111/j.1095-8312.1999.tb01157.x

    Google Scholar 

  • Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, Waits LP, Bouvet J (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189–3194. doi:10.1093/nar/24.16.3189

    PubMed  CAS  Google Scholar 

  • Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends Ecol Evol 14:323–327. doi:10.1016/S0169-5347(99)01637-7

    PubMed  Google Scholar 

  • Trinca CS, Waldemarin HF, Eizirik E (2007) Genetic diversity of the Neotropical otter (Lontra longicaudis Olfers, 1818) in Southern and Southeastern Brazil. Braz J Biol 64:813–818

    Google Scholar 

  • Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379. doi:10.1046/j.1471-8286.2002.00228.x

    Google Scholar 

  • Valière N, Berthier P, Mouchiroud D, Pontier D (2002) GEMINI: software for testing the effects of genotyping errors and multitubes approach for individual identification. Mol Ecol Notes 2:83–86

    Google Scholar 

  • Valière N, Bonenfant C, Toïgo C, Luikart G, Gaillard J-M, Klein F (2007) Importance of a pilot study for non-invasive genetic sampling: genotyping errors and population size estimation in red deer. Conserv Genet 8:69–78. doi:10.1007/s10592-006-9149-2

    Google Scholar 

  • Waits JL, Leberg PL (2000) Biases associated with population estimation using molecular tagging. Anim Conserv 3:191–199. doi:10.1111/j.1469-1795.2000.tb00103.x

    Google Scholar 

  • Waits LP, Paetkau D (2005) Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J Wildl Manage 69:1419–1433. doi:10.2193/0022-541X(2005)69[1419:NGSTFW]2.0.CO;2

    Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256. doi:10.1046/j.1365-294X.2001.01185.x

    PubMed  CAS  Google Scholar 

  • Wandeler P, Smith S, Morin PA, Pettifor RA, Funk SM (2003) Patterns of nuclear DNA degeneration over time – a case study in historic teeth samples. Mol Ecol 12:1087–1093. doi:10.1046/j.1365-294X.2003.01807.x

    PubMed  CAS  Google Scholar 

  • Wilson GJ, Delahay RJ (2001) A review of methods to estimate the abundance of terrestrial carnivores using field signs and observation. Wildl Res 28:151–164. doi:10.1071/WR00033

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Miroslav Lehocký, Vašek Bartuška and Jana Moravcová for help with collecting spraint samples in the field, and all the colleagues and volunteers that participated in the snow tracking actions. We appreciate the advice and support of Josef Bryja and Jan Zima. The study was supported by the Czech Science Foundation (grant no. 206/03/0757) and the Czech Ministry of Education (grant no. LC06073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Hájková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hájková, P., Zemanová, B., Roche, K. et al. An evaluation of field and noninvasive genetic methods for estimating Eurasian otter population size. Conserv Genet 10, 1667–1681 (2009). https://doi.org/10.1007/s10592-008-9745-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-008-9745-4

Keywords

Navigation