Skip to main content

Advertisement

Log in

Eurasian otter (Lutra lutra) density estimate based on radio tracking and other data sources

  • Original Paper
  • Published:
Mammal Research Aims and scope Submit manuscript

Abstract

Estimating animal population size is a critical task in both wildlife management and conservation biology. Precise and unbiased estimates are nonetheless mostly difficult to obtain, as estimates based on abundance over unit area are frequently inflated due to the “edge effect” bias. This may lead to the implementation of inappropriate management and conservation decisions. In an attempt to obtain an as accurate and conservative as possible picture of Eurasian otter (Lutra lutra) numbers, we combined radio tracking data from a subset of tracked individuals from an extensive project on otter ecology performed in Southern Portugal with information stemming from other data sources, including trapping, carcasses, direct observation of tagged and untagged individuals, relatedness estimates among genotyped individuals, and a minor contribution from non-invasive genetic sampling. In 158 km of water network, which covers a sampling area of 161 km2 and corresponds to the minimum convex polygon constructed around the locations of five radio-tracked females, 21 animals were estimated to exist. They included the five radio-tracked, reproducing females and six adult males. Density estimates varied from one otter per 3.71–7.80 km of river length (one adult otter per 7.09–14.36 km) to one otter per 7.67–7.93 km2 of range, depending on the method and scale of analysis. Possible biases and implications of methods used for estimating density of otters and other organisms living in linear habitats are highlighted, providing recommendations on the issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arrendal J, Vilà C, Björklund M (2007) Reliability of noninvasive genetic census of otters compared to field censuses. Conserv Genet 8:1097–1107

    Article  Google Scholar 

  • Bellemain E, Swenson JE, Tallmon D, Brunberg S, Taberlet P (2005) Estimating population size of elusive animals with DNA from hunter-collected feces: four methods for brown bears. Conserv Biol 19:150–161

    Article  Google Scholar 

  • Bischof R, Swenson JE (2012) Linking noninvasive genetic sampling and traditional monitoring to aid management of a trans-border carnivore population. Ecol Appl 22:361–373

    Article  PubMed  Google Scholar 

  • Bonesi L, Hale M, Macdonald MW (2013) Lessons from the use of non-invasive genetic sampling as a way to estimate Eurasian otter population size and sex ratio. Acta Theriol 58:157–168

    Article  Google Scholar 

  • Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    Article  CAS  PubMed  Google Scholar 

  • Boulanger J, Kendall KC, Stetz JB, Roon DA, Waits LP, Paetkau D (2008) Multiple data sources improve DNA-based mark-recapture population estimates of grizzly bears. Ecol Appl 18:577–589

    Article  PubMed  Google Scholar 

  • Calzada J, Delibes-Mateos M, Clavero M, Delibes M (2009) If drink coffee at the coffee-shop is the answer, what is the question? Some comments on the use of the sprainting index to monitor otters. Ecol Indic 10:560–561

    Article  Google Scholar 

  • Cianfrani C, Le Lay G, Maiorano L, Satizábal HF, Loy A, Guisan A (2011) Adapting global conservation strategies to climate change at the European scale: the otter as a flagship species. Biol Conserv 144:2068–2080

    Article  Google Scholar 

  • Creel S, Spong G, Sands JL, Rotella J, Zeigle J, Joe L, Murphy KM, Smith D (2003) Population size estimation in Yellowstone wolves with error-prone noninvasive microsatellite genotypes. Mol Ecol 12:2003–2009

    Article  PubMed  Google Scholar 

  • Dallas J, Carss DN, Marshall F, Koepfli K-P, Kruuk H, Bacon PJ, Piertney SB (2000) Sex identification of the Eurasian otter Lutra lutra by PCR typing of spraints. Conserv Genet 1:181–183

    Article  CAS  Google Scholar 

  • Dallas J, Coxon K, Sykes T, Chanin P, Marshall F, Carss D, Bacon P, Piertney S, Racey P (2003) Similar estimates of population genetic composition and sex ratio derived from carcasses and faeces of Eurasian otter Lutra lutra. Mol Ecol 12:275–282

    Article  CAS  PubMed  Google Scholar 

  • Dice LR (1938) Some census methods for mammals. J Wildl Manag 2:119–130

    Article  Google Scholar 

  • Erlinge S (1968) Territoriality of the otter Lutra lutra L. Oikos 19:1–98

    Article  Google Scholar 

  • Ferrando A, Lecis R, Domingo-Roura X, Ponsà M (2008) Genetic diversity and individual identification of reintroduced otters (Lutra lutra) in north-eastern Spain by DNA genotyping of spraints. Conserv Genet 9:129–139

    Article  CAS  Google Scholar 

  • Gallant D, Vasseur L, Bérubé CH (2007) Unveiling the limitations of scat surveys to monitor social species: a case study on river otters. J Wildl Manag 71:258–265

    Article  Google Scholar 

  • García P, Arevalo V, Mateos I (2009) Using sightings for estimating population density of Eurasian otter (Lutra lutra): a preliminary approach with Rowcliffe et al's model. IUCN Otter Specialist Group Bull 26:50–59

    Google Scholar 

  • Garshelis DL (1992) Mark-Recapture Density Estimation For Animals With Large Home Ranges. In: McCullough DR et al. (eds) Wildlife 2001: Populations, Elsevier, pp 1098-1111

  • Guter A, Dolev A, Saltz D, Kronfeld-Schor N (2008) Using videotaping to validate the use of spraints as an index of Eurasian otter (Lutra lutra) activity. Ecol Indic 8:462–465

    Article  Google Scholar 

  • Hájková P, Zemanová B, Roche K, Hájek B (2009) An evaluation of field and noninvasive genetic methods for estimating Eurasian otter population size. Conserv Genet 10:1667–1681

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:218–620

    Article  Google Scholar 

  • Kalinowski ST, Wagner AP, Taper ML (2006) ML-Relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579

    Article  CAS  Google Scholar 

  • Kelly MJ, Betsch J, Wultsch C, Mesa B, Mills S (2012) Noninvasive sampling for carnivores. In: Boitani L, Powell R (eds) Carnivore ecology and conservation. Oxford University Press, New York, pp 47–69

    Chapter  Google Scholar 

  • Kruuk H, Conroy JWH, Glimmerween U, Ouwerkerk EJ (1986) The use of spraints to survey populations of otters Lutra lutra. Biol Conserv 35:187–194

    Article  Google Scholar 

  • Kruuk H, Conroy JWH (1987) Surveying otter Lutra lutra populations: a discussion of problems with spraints. Biol Conserv 41:179–183

    Article  Google Scholar 

  • Kruuk H, Moorhouse A, Conroy JWH, Durbin L, Frears S (1989) An estimate of numbers and habitat preferences of otters Lutra lutra in Shetland, UK. Biol Conserv 49:241–254

    Article  Google Scholar 

  • Kruuk H (2006) Otters - ecology, behaviour and conservation. Oxford University Press

  • Lampa S, Henle K, Klenke R, Hoehn M, Gruber B (2013) How to overcome genotyping errors in non-invasive genetic mark-recapture population size estimation—a review of available methods illustrated by a case study. J Wildl Manag 77:1490–1511

    Article  Google Scholar 

  • Marnell F, Ó Néill L, Lynn D (2011) How to calculate range and population size for the otter? The Irish approach as a case study. IUCN Otter Spec Group Bull 28:15–22

    Google Scholar 

  • Mason CF, Macdonald SM (1986) Otters: ecology and conservation. Cambridge University Press

  • Mason CF, Macdonald SM (1987) The use of spraints for surveying otter Lutra lutra populations: an evaluation. Biol Conserv 41:167–177

    Article  Google Scholar 

  • Melquist W, Hornocker MG (1983) Ecology of river otters in west central Idaho. Wildl Monogr 83:3–60

    Google Scholar 

  • Miller SD, White GC, Sellers RA, Reynolds HV, Schoen JW, Titus K, Barnes V Jr, Smith RB, Nelson RR, Ballard WB, Schwartz CC (1997) Brown and black bear density estimation in Alaska using radiotelemetry and replicated mark-resight techniques. Wildl Monogr 133:3–55

    Google Scholar 

  • Mills LS, Citta JJ, Lair KP, Schwartz MK, Tallmon DA (2000) Estimating animal abundance using noninvasive DNA sampling: promise and pitfalls. Ecol Appl 10:283–294

    Article  Google Scholar 

  • Obbard ME, Howe EJ, Kyle CJ (2010) Empirical comparison of density estimators for large carnivores. J Appl Ecol 47:76–84

    Article  Google Scholar 

  • Ó Néill L, de Jongh A, de Jong T, Ozolinš J, Rochford J (2007) Minimizing leg-hold trapping trauma for otters with mobile phone technology. J Wildl Manag 71:2776–2780

    Article  Google Scholar 

  • Ó Néill L, Wilson P, de Jongh A, de Jong T, Rochford J (2008) Field techniques for handling, anaesthetising and fitting radio-transmitters to Eurasian otters Lutra lutra. Eur J Wildl Res 54:681–687

    Article  Google Scholar 

  • Ó Néill L, Veldhuizen T, de Jongh A, Rochford J (2009) Ranging behaviour and socio-biology of Eurasian otters (Lutra lutra) on lowland mesotrophic river systems. Eur J Wildl Res 55:363–370

    Article  Google Scholar 

  • Otis DL, Burnham KP, White GC, Anderson DR (1978) Statistical inference from capture data on closed animal populations. Wildl Monogr 62:1–135

    Google Scholar 

  • Paetkau D (2003) An empirical exploration of data quality in DNA-based population inventories. Mol Ecol 12:1375–1387

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peterson EE, VerHoef JM, Isaak DJ, Falke JA, Fortin M-J, Jordan CE, McNyset K, Monestiez P, Ruesch AS, Sengupta A, Som N, Steel EA, Theobald DM, Torgersen CE, Wenger SJ (2013) Modelling dendritic ecological networks in space: an integrated network perspective. Ecol Lett 16:707–719

    Article  PubMed  Google Scholar 

  • Pollock KH, Nichols JD, Karanth KU (2012) Estimating demographic parameters. In: Boitani L, Powell R (eds) Carnivore ecology and conservation. Oxford University Press, New York, pp 169–187

    Chapter  Google Scholar 

  • Powell LA, Conroy MJ, Hines JE, Nichols JD, Krementz DG (2000) Simultaneous use of mark-recapture and radiotelemetry to estimate survival, movement, and capture rates. J Wildl Manag 64:302–313

    Article  Google Scholar 

  • Powell RA (2012) Movements, home ranges, activity, and dispersal. In: Boitani L, Powell R (eds) Carnivore ecology and conservation. Oxford University Press, New York, pp 188–217

    Chapter  Google Scholar 

  • Prigioni C, Remonti L, Balestrieri A, Sgrosso S, Priore G, Mucci N, Randi E (2006) Estimation of European otter (Lutra lutra) population size by fecal DNA typing in Southern Italy. J Mammal 87:855–858

    Article  Google Scholar 

  • Quaglietta L (2011) Ecology and behaviour of the Eurasian otter (Lutra lutra) in a Mediterranean area (Alentejo, Portugal). PhD Dissertation (in Italian), Università degli Studi di Roma “La Sapienza”

  • Quaglietta L, Fonseca VC, Hájková P, Mira A, Boitani L (2013) Fine-scale population genetic structure and short-range sex-biased dispersal in a solitary carnivore, the Eurasian otter (Lutra lutra). J Mammal 94:561–571

    Article  Google Scholar 

  • Quaglietta L, Fonseca VC, Mira A, Boitani L (2014) Socio-spatial organization of a solitary carnivore, the Eurasian otter. J Mammal 95:140–150

    Article  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  • Reuther C, Dolch D, Green R, Jahrl J, Jefferies D, Krekemeyer A, Kucerova M, Madsen AB, Romanowski J, Roche K, Ruiz-Olmo J, Teubner J, Trindade A (2002) Surveying and monitoring distribution and population trends of the Eurasian Otter (Lutra lutra). Guidelines and evaluation of the standard method surveys as recommended by the European Section of the IUCN/SSC Otter Specialist Group. Habitat 12:1–148

    Google Scholar 

  • Ruiz-Olmo J, Saavedra D, Jiménez J (2001) Testing the surveys and visual and track censuses of Eurasian otters Lutra lutra. J Zool (Lond) 253:359–369

    Article  Google Scholar 

  • Ruiz-Olmo J, Batet A, Mańas F, Martínez-Vidal R (2011) Factors affecting otter (Lutra lutra) abundance and breeding success in freshwater habitats of the northeastern Iberian Peninsula. Eur J Wildl Res 57:827–842

    Article  Google Scholar 

  • Saavedra D (2002) Reintroduction of the Eurasian otter Lutra lutra in Muga and Fluviā basins North-Easthern Spain: Viability, Development, Monitoring and Trends of the new population. PhD Dissertation. Universitat de Girona

  • Seber GAF (1986) A review of estimating animal abundance. Biometrics 42:267–292

    Article  CAS  PubMed  Google Scholar 

  • Serfass TL, Brooks RP, Swimley TJ, Rymon LM, Hayden HA (1996) Considerations for capturing, handling, and translocating River Otters. Wildl Soc B 24:25–31

    Google Scholar 

  • Sinclair ARE, Fryxell JM, Caughley G (2006) Wildlife Ecology Conservation and Management. 2nd edn, Blackwell Publishing

  • Smallwood KS, Schonewald C (1998) Study design and interpretation of mammalian carnivore density estimates. Oecologia 113:474–491

    Article  Google Scholar 

  • Solberg KH, Bellemain E, Drageset O-M, Taberlet P, Swenson JE (2006) An evaluation of field and non-invasive genetic methods to estimate brown bear (Ursus arctos) population size. Biol Conserv 128:158–168

    Article  Google Scholar 

  • Soisalo MK, Cavalcanti SM (2006) Estimating the density of a jaguar population in the Brazilian Pantanal using camera-traps and capture–recapture sampling in combination with GPS radio-telemetry. Biol Conserv 129:487–496

    Article  Google Scholar 

  • Somers MJ, Nel JAJ (2004) Movement patterns and home range of cape clawless otters Aonyx capensis, affected by high food density patches. J Zool (Lond) 262:91–98

    Article  Google Scholar 

  • Sulkava RT, Sulkava PO, Sulkava PE (2007) Source and sink dynamics of density-dependent otter (Lutra lutra) populations in rivers of central Finland. Oecologia 153:579–588

    Article  PubMed  Google Scholar 

  • Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends Ecol Evol 14:323–327

    Article  PubMed  Google Scholar 

  • Trindade A, Farinha N, Floręncio E (1998) A distribuiçăo da lontra Lutra lutra em Portugal - situaçăo em 1995. ICN, Lisbon

    Google Scholar 

  • Waits LP, Paetkau D (2005) Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J Wildl Manag 69:1419–1433

    Article  Google Scholar 

  • White GC, Garrott RA (1990) Analysis of wildlife radio-tracking data. Academic, San Diego

    Google Scholar 

  • White GC, Shenk TM (2001) Population estimation with radio-marked animals. In: Millspaugh JJ, Marzluff JM (eds) Radio tracking and animal populations. Academic, San Diego, pp 329–350

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was conducted within the framework of the Ph.D. project of LQ. Funding was provided by Luis de Molina (Évora University) and by LQ’s Ph.D. fellowship. PH was supported by the Grant Agency of the Academy of Sciences of the Czech Republic, grant no. KJB600930804. The Dutch Otterstation Foundation provided some equipment and extra support. We are grateful to veterinarians J. Potes and J. Reis (Évora University), who operated on the otters at any time of the day, the students who participated in field data collection, L. Ó Néill for equipment lending, J. van Dijk and T. Moen Heggberget for performing cementum annuli age estimates, A. and T. de Jongh for helping with some trapping, C. Shafer for her kind English revision, and three anonymous referees for their useful comments. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Quaglietta.

Additional information

Communicated by: Andrzej Zalewski

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Protocols used for samples storage and genetic analyses (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quaglietta, L., Hájková, P., Mira, A. et al. Eurasian otter (Lutra lutra) density estimate based on radio tracking and other data sources. Mamm Res 60, 127–137 (2015). https://doi.org/10.1007/s13364-015-0216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13364-015-0216-2

Keywords

Navigation