Skip to main content

Advertisement

Log in

Non-invasive genetic study of the endangered Cantabrian brown bear (Ursus arctos)

  • Reseach Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The Brown Bear (Ursus arctos) population present in the Cantabrian Mountains has suffered a dramatic decline in recent centuries and is now threatened with extinction. This situation has led to the development and implementation of a species recovery plan. To accomplish this plan, we need to improve our knowledge about the ecology, demography and genetics of this population. This paper presents the genetic analysis of the Cantabrian brown bear population using non-invasive samples (faeces and hairs) collected between 2004 and 2006. It was necessary to optimize a set of 18 microsatellite loci and a sex marker (several new multiplex reactions were developed) to obtain a suitable probability of identity among genotypes to work with this small, deeply structured population. Genotyping of 48 individuals was carried out using a two-step PCR protocol to increase the quality of the multilocus genotypes. Validation of genotypes was performed using a multi-tube approach combined with different software programmes to measure their error rate and reliability. Diversity in the Cantabrian population was low (H e = 0.51) and the population was markedly subdivided into two subpopulations (western and eastern) without current gene flow between them. The level of divergence between the two subpopulations (F st = 0.41) and the extremely low diversity in the eastern group (H e = 0.25) indicate that this has had an extremely low effective population size and had been isolated from the main group during the last century. Connectivity between the two subpopulations will be of prime importance for the long-term survival of this species in the Cantabrian Mountains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen M, Engström AS, Meyers S et al (1998) Mitochondrial DNA sequencing of shed hairs and saliva on robbery caps: sensitivity and matching probabilities. J Forensic Sci 43:453–464

    PubMed  CAS  Google Scholar 

  • Allendorf FW, Servheen C (1986) Genetics and the conservation of grizzly bears. Trends Ecol Evol 1:88–89

    Article  Google Scholar 

  • Bayes MK, Smith KL, Alberts SC, Brudford MW (2000) Testing the reliability of microsatellite typing from faecal DNA in the savannah baboon. Conserv Genet 1:173–176

    Article  CAS  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France)

  • Bellemain E, Taberlet P (2004) Improved noninvasive genotyping method: application to brown bear (Ursus arctos) faeces. Mol Ecol Notes 4:519–522

    Article  CAS  Google Scholar 

  • Bellemain E, Nawaz MA, Valentini A, Swenson JE, Taberlet P (2007) Genetic tracking of the brown bear in northern Pakistan and implications for conservation. Biol Conserv 134:537–547

    Article  Google Scholar 

  • Bergl RA, Vigilant L (2007) Genetic analysis reveals population structure and recent migration within the highly fragmented range of the Cross River gorilla (Gorilla gorilla diehli). Mol Ecol 16:501–516

    Article  PubMed  Google Scholar 

  • Bjilsma R, Bundgaard J, Boerema A (2000) Does inbreeding affect the extinction risk of small population? Predictions from Drosophila. J Evol Biol 13:502–514

    Article  Google Scholar 

  • Bonin A, Bellemain E, Eidesen PB et al (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    Article  PubMed  CAS  Google Scholar 

  • Chu JH, Lin YS, Wu HY (2006) Applicability of non-invasive sampling in population genetic study of Taiwanese macaques (Macaca cyclopis). Taiwania 51:258–265

    Google Scholar 

  • Coulon A, Cosson JF, Angibault JM et al (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol Ecol 13:2841–2850

    Article  PubMed  CAS  Google Scholar 

  • Craighead L, Paetkau D, Reynolds HV, Vyse ER, Strobeck C (1995) Microsatellite analysis of paternity and reproduction in Artic grizzly bears. J Hered 86:255–261

    PubMed  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Frankham R, Franklin IR (1998) Response to Lynch and Lande. Anim Conserv 1:73

    Article  Google Scholar 

  • Franklin IR (1980) Evolutionary change in small populations. In: Soulé ME, Wilcox BA (eds) Conservation biology: an evolutionary-ecological perspective. Sinauer, Sunderland, MA, pp 135–150

    Google Scholar 

  • Frantz AC, Pope LC, Carpenter PJ et al (2003) Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA. Mol Ecol 12:1649–1661

    Article  PubMed  CAS  Google Scholar 

  • Hanski IA, Gilpin M (1997) Metapopulation biology: ecology and evolution. Academic Press, Toronto

    Google Scholar 

  • Keller L, Arcese P, Smith J, Hochachka WM, Stearns SC (1994) Selection against inbred song sparrows during a natural population bottleneck. Nature 372:356–357

    Article  PubMed  CAS  Google Scholar 

  • Kohn MH, York EC, Kamradt DA et al (1999) Estimating population size by genotyping faeces. Proc R Soc Lond B 266:657–663

    Article  CAS  Google Scholar 

  • Kraaijeveld-Smith FLJ, Beebee TJC, Griffiths RA, Moore RD, Schley L (2005) Low gene flow but high genetic diversity in the threatened Mallorcan midwife toad Alytes muletensis. Mol Ecol 14:3307–3315

    Article  CAS  Google Scholar 

  • Lacy RC (1997) The importance of genetic variation to the viability of mammalian populations. J Mammal 78:320–335

    Article  Google Scholar 

  • Lande R, Barrowclough G (1987) Effective population size, genetic variation and their use in population management. In: Soulé ME (ed) Viable populations for conservation. Cambridge University Press, New York, pp 87–123

    Google Scholar 

  • Lynch M, Lande R (1998) The critical effective size for a genetically secure population. Anim Conserv 1:70–72

    Article  Google Scholar 

  • McKelvey KS, Schwartz MK (2004) Genetic errors associated with population estimation using non-invasive molecular tagging: problems and new solutions. J Wildl Manage 68:439–448

    Article  Google Scholar 

  • Miller CR, Waits LP (2003) The history of effective population size and genetic diversity in the Yellowstone grizzly (Ursus arctos): implication for conservation. Proc Natl Acad Sci USA 7:4334–4339

    Article  CAS  Google Scholar 

  • Miller CR, Joyce P, Waits LP (2002) Assessing allelic drop-out and genotype reliability using maximum likelihood. Genetics 160:357–366

    PubMed  Google Scholar 

  • Moritz C (1994) Defining ‘Evolutionary significant units’ for conservation. Trends Ecol Evol 9:373–375

    Article  Google Scholar 

  • Naves J, Nores C (1997) Status of the brown bear in western Cantabria, Spain. In: Servheen C, Herrero S, Peyton B (eds) Bears: status survey, conservation action plan. International Union for the Conservation of Nature, Natural Resources. Gland, Switzerland, pp 104–111

    Google Scholar 

  • Naves J, Wiegand T, Fernandez A, Stephan T (1999) Riesgo de extinción del oso pardo cantábrico La población occidental. Fundación Oso de Asturias, Oviedo, Spain

    Google Scholar 

  • Naves J, Wiegand T, Revilla E, Delibes M (2003) Endangered species constrained by natural and human factors: the case of brown bears in northern Spain. Conserv Biol 17:1276–1286

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  Google Scholar 

  • Nsubuga AM, Robbins MM, Roeder AD et al (2004) Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method. Mol Ecol 13:2089–2094

    Article  PubMed  CAS  Google Scholar 

  • Paetkau D, Strobeck C (1994) Microsatellite analysis of genetic variation in black bear populations. Mol Ecol 3:489–495

    Article  PubMed  CAS  Google Scholar 

  • Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354

    Article  PubMed  CAS  Google Scholar 

  • Paetkau D, Waits LP, Clarkson P et al (1998) Variation in genetic diversity across the range of North American brown bears. Conserv Biol 12:418–429

    Article  Google Scholar 

  • Piggot M, Bellemain E, Taberlet P, Taylor AC (2004) A multiplex pre-amplification method that significantly improves microsatellite amplification and error rates for faecal DNA in limiting conditions. Conserv Genet 5:417–420

    Article  Google Scholar 

  • Pritchard JK, Stephens P, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Roeder AD, Archer FI, Poinar HN, Morin PA (2004) A novel method for collection and preservation of faeces for genetic studies. Mol Ecol Notes 4:761–764

    Article  CAS  Google Scholar 

  • Servheen C (1990) The status and conservation of the bears of the world. In: International conference of bear research and management monography series, vol. 2, pp. 1–32

  • Sherwin WB, Moritz C (2000) Managing and monitoring genetic erosion. In: Young AJ, Clarke G (eds) Demography genetics viability of fragmented populations. Cambridge University Press, New York

    Google Scholar 

  • Simberloff D (1988) The contribution of population and community biology to conservation science. Annu Rev Ecol Syst 19:473–511

    Article  Google Scholar 

  • Smith DA, Ralls K, Hurt A et al (2006) Assessing reliability of microsatellite genotypes from kit fox faecal samples using genetic and GIS analyses. Mol Ecol 15:387–406

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1994) Biometry: the principles and practice of statistics in biological research. WH Freeman, New York

    Google Scholar 

  • Soulé ME (ed) (1987) Viable populations for conservation. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Taberlet P, Bouvet J (1994) Mitochondrial DNA polymorphism, phylogeography, and conservation genetics of the brown bear (Ursus arctos) in Europe. Proc R Soc Lond B 255:195–200

    Article  CAS  Google Scholar 

  • Taberlet P, Luikart G (1999) Non-invasive genetic sampling and individual identification. Biol J Linn Soc 68:41–55

    Article  Google Scholar 

  • Taberlet P, Griffin S, Goossens B et al (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 26:3189–3194

    Article  Google Scholar 

  • Taberlet P, Camarra JJ, Griffin S et al (1997) Noninvasive genetic tracking of the endangered Pyrenean brown bear population. Mol Ecol 6:869–876

    Article  PubMed  CAS  Google Scholar 

  • Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends Ecol Evol 14:323–327

    Article  PubMed  Google Scholar 

  • Taylor BL, Dizon AE (1999) First policy then science: why a management unit based solely on genetic criteria cannot work. Mol Ecol 8:S11–S16

    Article  PubMed  CAS  Google Scholar 

  • Valière N (2002) GIMLET, a computer program for analyzing genetic individual identification data. Mol Ecol Notes 2:377–379

    Article  Google Scholar 

  • Vigilant L (1999) An evaluation of techniques for the extraction and amplification of DNA from naturally shed hairs. Biol Chem 380:1329–1331

    Article  PubMed  CAS  Google Scholar 

  • Waits LP, Talbot S, Ward RH, Shields GF (1998) Mitochondrial DNA phylogeography of the North American brown bear and implications for conservation. Conserv Biol 12:408–417

    Article  Google Scholar 

  • Waits LP, Taberlet P, Swenson JE, Sandegren F (2000) Nuclear DNA microsatellite analysis of genetic diversity and gene flow in the Scandinavian brown bear (Ursus arctos). Mol Ecol 9:421–431

    Article  PubMed  CAS  Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256

    Article  PubMed  CAS  Google Scholar 

  • Weir BS (1996) Genetic data analysis II. Sinauer Associates Inc., Massachusetts

    Google Scholar 

  • Wiegand T, Naves J, Stephan T, Fernández A (1998) Assessing the risk of extinction for the brown bear (Ursus arctos) in the Cordillera Cantabrica, Spain. Ecol Monogr 68:539–571

    Google Scholar 

  • Woods JG, Paetkau D, Lewis D et al (1999) Genetic tagging of free-ranging black and brown bears. Wildl Soc B 27:616–627

    Google Scholar 

  • Zedrosser A, Dahle B, Swenson JE, Gerstl N (2001) Status and management of the brown bear in Europe. Ursus 12:9–20

    Google Scholar 

Download references

Acknowledgements

This work was funded by Grant CN-05-030 from the “Consejería de Medio Ambiente y Ordenación del Territorio e Infraestructuras del Principado de Asturias” We wish to thank the “Junta de Castilla y León” for their economic support and for providing some of the samples; Miguel Rico, Juan Seijas and the “Guardería Rural del Principado de Asturias”, who also provided samples; Dr. Lissette Waits and the two anonymous reviewers who helped to improve this manuscript with their valuable comments, and Paul Barnes, who thoroughly reviewed the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trinidad Pérez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, T., Vázquez, F., Naves, J. et al. Non-invasive genetic study of the endangered Cantabrian brown bear (Ursus arctos). Conserv Genet 10, 291–301 (2009). https://doi.org/10.1007/s10592-008-9578-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-008-9578-1

Keywords

Navigation