Skip to main content

Advertisement

Log in

Gene flow in a direct-developing, leaf litter frog between isolated mountains in the Taita Hills, Kenya

  • Original Paper
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Amphibians are in decline worldwide, and high altitude tropical areas appear to be the worst affected. This is in stark contrast with current information we have on gene flow in amphibian populations which focus on temperate pond breeding species. Using AFLP markers, we show that a small, direct-developing, leaf litter frog from the Taita Hills in south–west Kenya (Schoutedenella xenodactyloides) has extended populations covering large areas (>3.5 km) of fragmented, forest habitat, uncharacteristic of typical amphibian models. Further, we demonstrate high levels of gene flow (F ST < 0.065) through unsuitable dry savannah habitat which might otherwise be considered a barrier to dispersal. Landscape genetic analysis demonstrates a strong link between hydrologic features, and further highlights links between sites through specific catchments. We propose a model of passive-active dispersal for the Dwarf Squeaker, S. xenodactyloides, which features passive downhill and active uphill movements over large areas, contrasting with limited cross slope movements. Our study highlights the importance of the diverse reproductive strategies of the Amphibia when considering dispersal and gene flow, and hence conservation management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arnaud J-F (2003) Metapopulation genetic structure and migration pathways in the land snail Helix aspersa: influence of landscape heterogeneity. Landscape Ecol 18:333–346

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge MA

    Google Scholar 

  • Barbour T, Loveridge A (1928) A comparative study of the herpetological faunae of the Uluguru and Usambara Mountains, Tanganyika Territory, with descriptions of new species. Mem Museum Compar Zool Harvard 50:87–265

    Google Scholar 

  • Beebee TJC (2005) Conservation genetics of amphibians. Heredity 95:423–427

    Article  PubMed  CAS  Google Scholar 

  • Beebee TJC, Griffiths RA (2005) The amphibian decline crisis: a watershed for conservation biology? Biol Conserv 125:271–285

    Article  Google Scholar 

  • Beentje HJ (1988) An ecological and floristic study of the forests of the Taita Hills, Kenya. Utafiti 1:23–66

    Google Scholar 

  • Blackburn DC, Moreau CS (2006) Ontogenetic diet change in the arthroleptid frog Schoutedenella xenodactyloides. J Herpetol 40:388–394

    Article  Google Scholar 

  • Blaustein AR, Wake DB, Sousa WP (1994) Amphibian declines: judging stability, persistence, and susceptibility of populations to local and global extinctions. Conserv Biol 8:60–71

    Article  Google Scholar 

  • Blears MJ, De Grandis SA, Lee H, Trevors JT (1998) Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J Indust Microbiol Technol 21:99–114

    Article  CAS  Google Scholar 

  • Bonnet E, Van de Peer Y (2002) zt: a software tool for simple and partial Mantel tests. J Statist Software 7:1–12

    Google Scholar 

  • Brooks TM, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Rylands AB, Konstant WR, Flick P, Pilgrim J, Oldfield S, Magin G, Hilton-Taylor C (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16:909–923

    Article  Google Scholar 

  • Burns EL, Eldridge MDB, Houlden BA (2004) Microsatellite variation and population structure in a declining Australian Hylid Litoria aurea. Mol Ecol 13:1745–1757

    Article  PubMed  CAS  Google Scholar 

  • Channing A (2001) Amphibians of central and southern Africa. Protea, Pretoria

    Google Scholar 

  • Channing A, Howell K (2005) Amphibians of east Africa. Chimera Press

  • Crawford AJ (2003) Huge populations and old species of Costa Rican and Panamanian dirt frogs inferred from mitochondrial and nuclear gene sequences. Mol Ecol 12:2525–2540

    Article  PubMed  CAS  Google Scholar 

  • Crump ML (1995) Parental care. In: Heatwole H (ed) Amphibian biology, vol 2. Social behavior. Surrey, Beatty and Sons, NSW, Australia, pp518–567

    Google Scholar 

  • Curtis JMR, Taylor EB (2003) The genetic structure of coastal giant salamanders (Dicamptodon tenebrosus) in a managed forest. Biol Conserv 115:45–54

    Article  Google Scholar 

  • Driscoll DA (1998) Genetic structure, metapopulation processes and evolution influence the conservation strategies for two endangered frog species. Biol Conserv 83:43–54

    Article  Google Scholar 

  • Duellman W, Trueb L (1986) Biology of amphibians. McGraw-Hill, New York

    Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Funk WC, Blouin MS, Corn PS, Maxell BA, Pilliod DS, Amish S, Allendorf FW (2005a) Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol Ecol 14:483–496

    Article  CAS  Google Scholar 

  • Funk WC, Greene AE, Corn PS, Allendorf FW (2005b) High dispersal in a frog species suggests that it is vulnerable to habitat fragmentation. Biol Lett 1:13–16

    Article  Google Scholar 

  • Galbusera P, Githiru M, Lens L, Matthysen E (2004) Genetic equilibrium despite habitat fragmentation in an Afrotropical bird. Mol Ecol 13:1409–1421

    Article  PubMed  CAS  Google Scholar 

  • Galbusera P, Lens L, Schenck T, Waiyaki E, Matthysen E (2000) Genetic variability and gene flow in the globally, critically-endangered Taita thrush. Conserv Genet 1:45–55

    Article  CAS  Google Scholar 

  • Gaudeul M, Till-Bottraud I, Barjon F, Manel S (2004) Genetic diversity and differentiation in Eryngium alpinum L. (Apiaceae): comparison of AFLP and microsatellite markers. Heredity 92:508–518

    Article  PubMed  CAS  Google Scholar 

  • Geffen E, Anderson MJ, Wayne RK (2004) Climate and habitat barriers to dispersal in the highly mobile grey wolf. Mol Ecol 13:2481–2490

    Article  PubMed  CAS  Google Scholar 

  • Ghalambor CK, Huey RB, Martin PR, Tewksbury JJ, Wangy G (2006) Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr Compar Biol 46:5–17

    Article  Google Scholar 

  • Githiru M, Bennun L, Lens L (2002) Regeneration patterns among bird-dispersed plants in a fragmented Afrotropical forest, south-east Kenya. J Trop Ecol 18:143–149

    Article  Google Scholar 

  • Houlahan J, Findlay C, Schmidt B, Mayer A, Kuzmin S (2000) Quantitative evidence for global amphibian declines. Nature 404:752–755

    Article  PubMed  CAS  Google Scholar 

  • Janzen DH (1967) Why mountain passes are higher in the tropics. Am Natur 101:233–249

    Article  Google Scholar 

  • Jehle R, Arntzen JW (2002) Microsatellite markers in amphibian conservation genetics. Herpetol J 12:1–9

    Google Scholar 

  • Jehle R, Burke T, Arntzen JW (2005) Delineating fine-scale genetic units in amphibians: probing the primacy of ponds. Conserv Genet 6:227–234

    Article  Google Scholar 

  • Kraaijeveld-Smit FJL, Beebee TJC, Griffiths RA, Moore RD, Schley L (2005) Low gene flow but high genetic diversity in the threatened Mallorcan midwife toad Alytes muletensis. Mol Ecol 14:3307–3315

    Article  PubMed  CAS  Google Scholar 

  • Lampert KP, Rand AS, Mueller UG, Ryan MJ (2003) Fine scale genetic pattern and evidence for sex-biased dispersal in the tungara frog, Physalaemus pustulosus. Mol Ecol 12:3325–3334

    Article  PubMed  CAS  Google Scholar 

  • Lens L, Van Dongen S, Norris K, Githiru M, Matthysen E (2002) Avian persistence in fragmented rainforest. Science 298:1236–1238

    Article  PubMed  CAS  Google Scholar 

  • Lips KR, Reeve JD, Witters LR (2003) Ecological traits predicting amphibian population declines in Central America. Conserv Biol 17:1078–1088

    Article  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    PubMed  CAS  Google Scholar 

  • Malonza PK, Measey GJ (2005) Life history of an African caecilian: Boulengerula taitanus (Caeciilidae: Amphibia: Gymnophiona). Trop Zool 18:49–66

    Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Marsh DM, Trenham PC (2000) Metapopulation dynamics and amphibian conservation. Conserv Biol 15:40–49

    Article  Google Scholar 

  • Mazerolle MJ, Desrochers A (2005) Landscape resistance to frog movements. Can J Zool 83:455–464

    Article  Google Scholar 

  • Measey GJ (2004) Are caecilians rare? An East African perspective. J East Afr Nat History 93:1–21

    Article  Google Scholar 

  • Morrison C, Hero JM (2003) Geographic variation in life-history characteristics of amphibians: a review. J Animal Ecol 72:270–279

    Article  Google Scholar 

  • Myers N, Mittermeier R, Mittermeier C, Fonseca Gd, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Newmark W (1998) Forest area, fragmentation and loss in the Eastern arc mountains: implications for the conservation of biological diversity. J East Afr Nat History 87:29–36

    Google Scholar 

  • Newmark WD (2001) Conserving biodiversity in East African forests: a study of the Eastern arc mountains. Springer-Verlag, Berlin

    Google Scholar 

  • Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MPL, Foster PN, Marca EL, Masters KL, Merino-Viteri A, Puschendorf R, Ron SR, Sánchez-Azofeifa GA, Still CJ, Young BE (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167

    Article  PubMed  CAS  Google Scholar 

  • Poynton JC (2003) Altitudinal species turnover in southern Tanzania shown by anurans: some zoogeographical considerations. Syst Biodiv 1:117–126

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Riberon A, Miaud C, Guyetant R, Taberlet P (2004) Genetic variation in an endemic salamander, Salamandra atra, using amplified fragment length polymorphism. Mol Phylogen Evol 31:910–914

    Article  CAS  Google Scholar 

  • Rowe G, Beebee TJC, Burke T (2000) A microsatellite analysis of natterjack toad, Bufo calamita, metapopulations. Oikos 88

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis. Genetics and Biometry Lab, Dept. of Anthropology, University of Geneva

  • Shaffer HB, Fellers GM, Magee A, Voss SR (2000) The genetics of amphibian declines: population substructure and molecular differentiation in the Yosemite toad, Bufo canorus (Anura, Bufonidae) based on single-strand conformation polymorphism analyis (SSCP) and mitochondrial DNA sequence data. Mol Ecol 9:245–257

    Article  PubMed  CAS  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Ann Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128

    Article  Google Scholar 

  • Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool 35:627–632

    Article  Google Scholar 

  • Spear SF, Peterson CR, Matocq M, Storfer A (2005) Landscape genetics of the blotched tiger salamander, Ambystoma tigrinum melanostictum. Mol Ecol 14:2553–2564

    Article  PubMed  CAS  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  PubMed  CAS  Google Scholar 

  • Sumner J, Jessop T, Paetkau D, Moritz C (2004) Limited effect of anthropogenic habitat fragmentation on molecular diversity in a rain forest skink, Gnypetoscincus queenslandiae. Mol Ecol 13:259–269

    Article  PubMed  Google Scholar 

  • Sztatecsny M, Schabetsberger R (2005) Into thin air: vertical migration, body condition, and quality of terrestrial habitats of alpine common toads, Bufo bufo. Can J Zool 83:788–796

    Article  Google Scholar 

  • Tallmon D, Funk WC, Dunlap WW, Allendorf FW (2000) Genetic differentiation among long-toed salamander (Ambystoma macrodactylum) populations. Copeia 2000:27–35

    Article  Google Scholar 

  • Trenham PC, Koenig WD, Shaffer HB (2001) Spatially autocorrelated demography and interpond dispersal in the salamander Ambystoma californiense. Ecology 82:3519–3530

    Google Scholar 

  • Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151

    Article  PubMed  CAS  Google Scholar 

  • Vences M, Andreone F, Glaw F, Kosuch J, Meyer A, Schaefer H-C, Veith M (2002) Exploring the potential of life-history key innovation: brook breeding in the radiation of the Malagasy treefrog genus Boophis. Mol Ecol 11:1453–1463

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP—a new technique for DNA-fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wake MH (2003) Reproductive modes, ontogenies, and the evolution of body form. Animal Biol 53:209–223

    Article  Google Scholar 

  • Whitlock A, Sztatecsny M, Jehle R (2006) AFLPs: genetic markers for paternity studies in newts (Triturus vulgaris). Amphibia-Reptilia 27:126–129

    Article  Google Scholar 

  • Wilder C, Brooks T, Lens L (1998) Vegetation structure and composition of the Taita Hills forests. J East Afr Nat History 87:1–7

    Google Scholar 

Download references

Acknowledgements

GJM would like to thank Beryl Akoth Bwong, Flo Dubs, Simon Mwombeyo and Jonam Mwandoe for help with collection of Dwarf Squeakers. Permission for collections was kindly granted by the National Museums of Kenya, Kenya Wildlife Service, the Taita-Taveta district officer and the Kenyan Ministry of Forestry Taita-Taveta division. Luc Lens, Toon Spanhove and Valerie Lehouck provided logistical help and support in the Taita Hills. Barney Clarke, Frank Adriaensen, Flo Dubs and Wouter Vanreusel gave valuable support for GIS analysis. David Blackburn is thanked for his insightful discussion and information concerning the biology of Dwarf Squeakers. AFLPs would not have been possible without the technical skills and competence of David Halfmaerten and special thanks are extended to him. GJM was supported by a visiting fellowship of the fund for scientific research Flanders, Belgium (FWO-Vl) and a grant for exploration from the Percy Sladen Memorial Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Measey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Measey, G.J., Galbusera, P., Breyne, P. et al. Gene flow in a direct-developing, leaf litter frog between isolated mountains in the Taita Hills, Kenya. Conserv Genet 8, 1177–1188 (2007). https://doi.org/10.1007/s10592-006-9272-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-006-9272-0

Keywords

Navigation