Skip to main content
Log in

A full second order variational model for multiscale texture analysis

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We present a second order image decomposition model to perform denoising and texture extraction. We look for the decomposition f=u+v+w where u is a first order term, v a second order term and w the (0 order) remainder term. For highly textured images the model gives a two-scale texture decomposition: u can be viewed as a macro-texture (larger scale) whose oscillations are not too large and w is the micro-texture (very oscillating) that may contain noise. We perform mathematical analysis of the model and give numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. We are very grateful to Pierre Weiss who provided the codes to compute the G-norm efficiently.

  2. Many others examples can be found at http://web.me.com/maitine.bergounioux/PagePro/Publications.html.

References

  1. Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl. 10(6), 1217–1229 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  3. Attouch, H., Buttazzo Michaille, G.: In: Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization. MPS-SIAM Series on Optimization (2006)

    Chapter  Google Scholar 

  4. Aubert, G., Aujol, J.F.: Modeling very oscillating signals, application to image processing. Appl. Math. Optim. 51(2), 163–182 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aubert, G., Aujol, J.F., Blanc-Feraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. Math. Imaging Vis. 22(1), 71–88 (2005)

    Article  MathSciNet  Google Scholar 

  6. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing, Partial Differential Equations and the Calculus of Variations. Applied Mathematical Sciences, vol. 147. Springer, Berlin (2006)

    MATH  Google Scholar 

  7. Aujol, J.F.: Contribution à l’analyse de textures en traitement d’images par méthodes variationnelles et équations aux dérivés partielles. PhD Thesis, Nice (2004)

  8. Bergounioux, M.: On Poincaré-Wirtinger inequalities in BV-spaces. Control Cybern. To appear, Issue 4 (2011)

  9. Bergounioux, M., Piffet, L.: A second-order model for image denoising and/or texture extraction. Set-Valued Var. Anal. 18(3–4), 277–306 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Biermé, H., Benhamou, C.L., Richard, F.: Parametric estimation for Gaussian operator scaling random fields and anisotropy analysis of bone radiograph textures. In: Pohl, K. (ed.) Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI’09), London, pp. 13–24 (2009)

    Google Scholar 

  11. Biermé, H., Richard, F.: Analysis of texture anisotropy based on some Gaussian fields with spectral density. In: Bergounioux, M. (ed.) Mathematical Image Processing. Springer Proceedings in Mathematics, vol. 5, pp. 59–74. Springer, Berlin (2011)

    Chapter  Google Scholar 

  12. Caselles, V., Chambolle, A., Novaga, M.: The discontinuity set of solutions of the TV denoising problem and some extensions. SIAM Multiscale Model. Simul. 6(3), 879–894 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  14. Demengel, F.: Fonctions à Hessien borné. Ann. Inst. Fourier 34(2), 155–190 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. SIAM Classic in Applied Mathematics, vol. 28 (1999)

    Book  MATH  Google Scholar 

  16. Evans, L.C., Gariepy, R.: Measure Theory and Fine Properties of Functions. CRC Press, New York (1992)

    MATH  Google Scholar 

  17. Guillot, L., Le Trong, E., Rozenbaum, O., Bergounioux, M., Rouet, J.L.: A mixed model of active geodesic contours with gradient vector flows for X-ray microtomography segmentation. In: Bergounioux, B.M. (ed.) Actes du colloque Mathématiques pour l’image (2009). PUO http://hal.archives-ouvertes.fr/hal-00267007/fr/

    Google Scholar 

  18. Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. University Lecture Series, vol. 22. AMS, New York (2001)

    MATH  Google Scholar 

  19. Osher, S., Fatemi, E., Rudin, L.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  20. Osher, S., Sole, A., Vese, L.: Image decomposition and restoration using total variation minimization and the H 1 norm. SIAM J. Multiscale Model. Simul. 1–3, 349–370 (2003)

    Article  MathSciNet  Google Scholar 

  21. Osher, S., Vese, L.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19(1–3), 553–572 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Osher, S.J., Vese, L.A.: Image denoising and decomposition with total variation minimization and oscillatory functions. J. Math. Imaging Vis. 20(1–2), 7–18 (2004). Special issue on mathematics and image analysis

    MathSciNet  Google Scholar 

  23. Piffet, L.: Modèles variationnels pour l’extraction de textures 2D. PhD Thesis, Orléans (2010)

  24. Ring, W.: Structural properties of solutions of total variation regularization problems. ESAIM, Math. Model. Numer. Anal. 34, 799–840 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Weiss, P., Blanc-Féraud, L., Aubert, G.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. (2009)

  26. Yin, W., Goldfarb, D., Osher, S.: A comparison of three total variation based texture extraction models. J. Vis. Commun. Image 18, 240–252 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maïtine Bergounioux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergounioux, M., Piffet, L. A full second order variational model for multiscale texture analysis. Comput Optim Appl 54, 215–237 (2013). https://doi.org/10.1007/s10589-012-9484-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-012-9484-9

Keywords

Navigation