Skip to main content
Log in

PAINT: Pareto front interpolation for nonlinear multiobjective optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

A method called PAINT is introduced for computationally expensive multiobjective optimization problems. The method interpolates between a given set of Pareto optimal outcomes. The interpolation provided by the PAINT method implies a mixed integer linear surrogate problem for the original problem which can be optimized with any interactive method to make decisions concerning the original problem. When the scalarizations of the interactive method used do not introduce nonlinearity to the problem (which is true e.g., for the synchronous NIMBUS method), the scalarizations of the surrogate problem can be optimized with available mixed integer linear solvers. Thus, the use of the interactive method is fast with the surrogate problem even though the problem is computationally expensive. Numerical examples of applying the PAINT method for interpolation are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barber, C.B., Dobkin, D.P., Huhdanpää, H.: The Quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22, 469–483 (1996)

    Article  MATH  Google Scholar 

  2. Bezerkin, V.E., Kamenev, G.K., Lotov, A.V.: Hybrid adaptive methods for approximating a nonconvex multidimensional Pareto frontier. Comput. Math. Math. Phys. 46, 1918–1931 (2006)

    Article  MathSciNet  Google Scholar 

  3. Brown, K.Q.: Voronoi diagrams from convex hulls. Inf. Process. Lett. 9, 223–228 (1979)

    Article  MATH  Google Scholar 

  4. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: IEEE International Conference on E-Commerce Technology, vol. 1, pp. 825–830 (2002)

    Google Scholar 

  5. Eaton, J.W.: GNU Octave Manual. Network Theory Limited (2002)

  6. Edelsbrunner, H., Mücke, E.P.: Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph. 9, 66–104 (1990)

    Article  MATH  Google Scholar 

  7. Efremov, R.V., Kamenev, G.K.: Properties of a method for polyhedral approximation of the feasible criterion set in convex multiobjective problems. Ann. Oper. Res. 166, 271–279 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eskelinen, P., Miettinen, K., Klamroth, K., Hakanen, J.: Pareto navigator for interactive nonlinear multiobjective optimization. OR Spektrum 32, 211–227 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goel, T., Vaidyanathan, R., Haftka, R.T., Shyy, W., Queipo, N.V., Tucker, K.: Response surface approximation of Pareto optimal front in multi-objective optimization. Comput. Methods Appl. Mech. Eng. 196, 879–893 (2007)

    Article  MATH  Google Scholar 

  10. Grünbaum, B.: Convex Polytopes. Interscience, London (1967)

    MATH  Google Scholar 

  11. Hakanen, J., Miettinen, K., Sahlstedt, K.: Wastewater treatment: new insight provided by interactive multiobjective optimization. Decis. Support Syst. 51, 328–337 (2011)

    Article  Google Scholar 

  12. Hartikainen, M., Miettinen, K., Wiecek, M.M.: Constructing a Pareto front approximation for decision making. Math. Methods Oper. Res. 73, 209–234 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hartikainen, M., Miettinen, K., Wiecek, M.M.: Pareto front approximations for decision making with inherent non-dominance. In: Shi, Y., Wang, S., Kou, G., Wallenius, J. (eds.) New State of MCDM in the 21st Century, Selected Papers of the 20th International Conference on Multiple Criteria Decision Making 2009, pp. 35–46. Springer, Berlin (2011)

    Google Scholar 

  14. Hasenjäger, M., Sendhoff, B.: Crawling along the Pareto front: tales from the practice. In: The 2005 IEEE Congress on Evolutionary Computation (IEEE CEC 2005), pp. 174–181. IEEE Press, Piscataway (2005)

    Google Scholar 

  15. Hwang, C., Masud, A.S.M.: Multiple Objective Decision Making—Methods and Applications: a State-of-the-Art Survey. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  16. Kamenev, G.K.: Study of an adaptive single-phase method for approximating the multidimensional Pareto frontier in nonlinear systems. Comput. Math. Math. Phys. 49, 2103–2113 (2009)

    Article  MathSciNet  Google Scholar 

  17. Keeney, R.L.: Value-Focused Thinking: a Path to Creative Decisionmaking. Harward University Press, Harward (1996)

    Google Scholar 

  18. Laukkanen, T., Tveit, T.-M., Ojalehto, V., Miettinen, K., Fogelholm, C.-J.: An interactive multi-objective approach to heat exchanger network synthesis. Comput. Chem. Eng. 34, 943–952 (2010)

    Article  Google Scholar 

  19. Lotov, A.V., Bushenkov, V.A., Kamenev, G.A.: Interactive Decision Maps. Kluwer Academic, Boston (2004)

    MATH  Google Scholar 

  20. Luque, M., Ruiz, F., Miettinen, K.: Global formulation for interactive multiobjective optimization. OR Spektrum 33, 27–48 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Martin, J., Bielza, C., Insua, D.R.: Approximating nondominated sets in continuous multiobjective optimization problems. Nav. Res. Logist. 52, 469–480 (2005)

    Article  MATH  Google Scholar 

  22. McMullen, P.: The maximum number of faces of a convex polytope. Mathematika 17, 179–184 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic, Boston (1999)

    MATH  Google Scholar 

  24. Miettinen, K.: IND-NIMBUS for demanding interactive multiobjective optimization. In: Trzaskalik, T. (ed.) Multiple Criteria Decision Making’05, pp. 137–150. The Karol Adamiecki University of Economics in Katowice, Katowice (2006)

    Google Scholar 

  25. Miettinen, K., Mäkelä, M.: Interactive bundle-based method for nondifferentiable multiobjective optimization: NIMBUS. Optimization 34, 231–246 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Miettinen, K., Mäkelä, M.M.: On scalarizing functions in multiobjective optimization. OR Spektrum 24, 193–213 (2002)

    Article  MATH  Google Scholar 

  27. Miettinen, K., Mäkelä, M.M.: Synchronous approach in interactive multiobjective optimization. Eur. J. Oper. Res. 170, 909–922 (2006)

    Article  MATH  Google Scholar 

  28. Miettinen, K., Ruiz, F., Wierzbicki, A.P.: Introduction to multiobjective optimization: interactive approaches. In: Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.) Multiobjective Optimization: Interactive and Evolutionary Approaches, pp. 27–57. Springer, Berlin (2008)

    Google Scholar 

  29. Monz, M.: Pareto navigation—algorithmic foundation of interactive multi-criteria IMRT planning. PhD thesis, University of Kaiserslautern (2006)

  30. Ruzika, S., Wiecek, M.M.: Approximation methods in multiobjective programming. J. Optim. Theory Appl. 126, 473–501 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sindhya, K., Deb, K., Miettinen, K.: Improving convergence of evolutionary multi-objective optimization with local search: a concurrent-hybrid algorithm. Nat. Comp. (to appear). doi:10.1007/s11047-011-9250-4

  32. Viennet, R., Fonteix, C., Marc, I.: Multicriteria optimization using a genetic algorithm for determining a Pareto set. Int. J. Syst. Sci. 27, 255–260 (1996)

    Article  MATH  Google Scholar 

  33. Wierzbicki, A.P.: On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spektrum 8, 73–87 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Mr. Karthik Sindhya for providing the Pareto optimal outcomes for the Viennet’s test problem. We also thank Dr. Jussi Hakanen for his help with the wastewater treatment planning problem.

This research was partly supported by the Academy of Finland (grant number 128495) and Jenny and Antti Wihuri Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Hartikainen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartikainen, M., Miettinen, K. & Wiecek, M.M. PAINT: Pareto front interpolation for nonlinear multiobjective optimization. Comput Optim Appl 52, 845–867 (2012). https://doi.org/10.1007/s10589-011-9441-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-011-9441-z

Keywords

Navigation