Skip to main content
Log in

Inexact Josephy–Newton framework for generalized equations and its applications to local analysis of Newtonian methods for constrained optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We propose and analyze a perturbed version of the classical Josephy–Newton method for solving generalized equations. This perturbed framework is convenient to treat in a unified way standard sequential quadratic programming, its stabilized version, sequential quadratically constrained quadratic programming, and linearly constrained Lagrangian methods. For the linearly constrained Lagrangian methods, in particular, we obtain superlinear convergence under the second-order sufficient optimality condition and the strict Mangasarian–Fromovitz constraint qualification, while previous results in the literature assume (in addition to second-order sufficiency) the stronger linear independence constraint qualification as well as the strict complementarity condition. For the sequential quadratically constrained quadratic programming methods, we prove primal-dual superlinear/quadratic convergence under the same assumptions as above, which also gives a new result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An, L.T.H.: An efficient algorithm for globally minimizing a quadratic function under convex quadratic constraints. Math. Program. 87, 401–426 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anitescu, M.: A superlinearly convergent sequential quadratically constrained quadratic programming algorithm for degenerate nonlinear programming. SIAM J. Optim. 12, 949–978 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arutyunov, A.V., Izmailov, A.F.: Sensitivity analysis for cone-constrained optimization problems under the relaxed constraint qualifications. Math. Oper. Res. 30, 333–353 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Audet, C., Hansen, P., Jaumard, B., Savard, G.: A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Math. Program. 87, 131–152 (2000)

    MATH  MathSciNet  Google Scholar 

  5. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York (1982)

    MATH  Google Scholar 

  6. Boggs, B.T., Tolle, J.W.: Sequential quadratic programming. Acta Numer. 4, 1–51 (1996)

    Article  MathSciNet  Google Scholar 

  7. Bonnans, J.F.: Local analysis of Newton-type methods for variational inequalities and nonlinear programming. Appl. Math. Optim. 29, 161–186 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    MATH  Google Scholar 

  9. Bonnans, J.F., Gilbert, J.Ch., Lemaréchal, C., Sagastizábal, C.: Numerical Optimization: Theoretical and Practical Aspects, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  10. Dennis, J.E., Moré, J.J.: A characterization of superlinear convergence and its application to quasi-Newton methods. Math. Comput. 28, 549–560 (1974)

    Article  MATH  Google Scholar 

  11. Fernández, D., Solodov, M.: On local convergence of sequential quadratically-constrained quadratic-programming type methods, with an extension to variational problems. Comput. Optim. Appl. 39, 143–160 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fernández, D., Solodov, M.: Stabilized sequential quadratic programming for optimization and a stabilized Newton-type method for variational problems. Math. Program. (2009). DOI 10.1007/s10107-008-0255-4

    Google Scholar 

  13. Fischer, A.: Local behavior of an iterative framework for generalized equations with nonisolated solutions. Math. Program. 94, 91–124 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Friedlander, M.P., Saunders, M.A.: A globally convergent linearly constrained Lagrangian method for nonlinear optimization. SIAM J. Optim. 15, 863–897 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fukushima, M., Luo, Z.-Q., Tseng, P.: A sequential quadratically constrained quadratic programming method for differentiable convex minimization. SIAM J. Optim. 13, 1098–1119 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hager, W.W.: Stabilized sequential quadratic programming. Comput. Optim. Appl. 12, 253–273 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Huang, Z.-H., Sun, D., Zhao, G.: A smoothing Newton-type algorithm of stronger convergence for the quadratically constrained convex quadratic programming. Comput. Optim. Appl. 35, 199–237 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Josephy, N.H.: Newton’s method for generalized equations. Technical Summary Report no. 1965, Mathematics Research Center, University of Wisconsin, Madison (1979)

  19. Josephy, N.H.: Quasi-Newton methods for generalized equations. Technical Summary Report no. 1966, Mathematics Research Center, University of Wisconsin, Madison (1979)

  20. Kantorovich, L.V., Akilov, G.P.: Functional Analysis, 2nd edn. Pergamon, Oxford (1982)

    MATH  Google Scholar 

  21. Kruk, S., Wolkowicz, H.: Sequential, quadratically constrained, quadratic programming for general nonlinear programming. In: Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.) Handbook of Semidefinite Programming, pp. 563–575. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  22. Li, D.-H., Qi, L.: Stabilized SQP method via linear equations. Appl. Math. Techn. Rept. AMR00/5, Univ. New South Wales, Sydney (2000)

  23. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Murtagh, B.A., Saunders, M.A.: A projected Lagrangian algorithm and its implementation for sparse nonlinear constraints. Math. Program. Study 16, 84–117 (1982)

    MATH  MathSciNet  Google Scholar 

  25. Nesterov, Y.E., Nemirovskii, A.S.: Interior Point Polynomial Methods in Convex Programming: Theory and Applications. SIAM, Philadelphia (1993)

    Google Scholar 

  26. Panin, V.M.: A second-order method for discrete min-max problem. USSR Comput. Math. Math. Phys. 19, 90–100 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  27. Robinson, S.M.: A quadratically convergent algorithm for general nonlinear programming problems. Math. Program. 3, 145–156 (1972)

    Article  MATH  Google Scholar 

  28. Robinson, S.M.: Perturbed Kuhn–Tucker points and rates of convergence for a class of nonlinear-programming algorithms. Math. Program. 7, 1–16 (1974)

    Article  MATH  Google Scholar 

  29. Robinson, S.M.: Stability theorems for systems of inequalities, Part II: Differentiable nonlinear systems. SIAM J. Numer. Anal. 13, 497–513 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  30. Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 43–62 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  31. Solodov, M.V.: On the sequential quadratically constrained quadratic programming methods. Math. Oper. Res. 29, 64–79 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Wiest, E.J., Polak, E.: A generalized quadratic programming-based phase-I–phase-II method for inequality-constrained optimization. Appl. Math. Optim. 26, 223–252 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wright, S.J.: Superlinear convergence of a stabilized SQP method to a degenerate solution. Comput. Optim. Appl. 11, 253–275 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wright, S.J.: Modifying SQP for degenerate problems. SIAM J. Optim. 13, 470–497 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wright, S.J.: Constraint identification and algorithm stabilization for degenerate nonlinear programs. Math. Program. 95, 137–160 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Solodov.

Additional information

Research of the first author is supported by the Russian Foundation for Basic Research Grants 07-01-00270, 07-01-00416 and 08-01-90001-Bel, and by RF President’s Grant NS-693.2008.1 for the support of leading scientific schools. The second author is supported in part by CNPq Grants 300513/2008-9 and 471267/2007-4, by PRONEX–Optimization, and by FAPERJ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izmailov, A.F., Solodov, M.V. Inexact Josephy–Newton framework for generalized equations and its applications to local analysis of Newtonian methods for constrained optimization. Comput Optim Appl 46, 347–368 (2010). https://doi.org/10.1007/s10589-009-9265-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-009-9265-2

Keywords

Navigation