Skip to main content
Log in

A generalized quadratic programming-based phase I-phase II method for inequality-constrained optimization

  • Published:
Applied Mathematics and Optimization Submit manuscript

Abstract

We present a globally convergent phase I-phase II algorithm for inequality-constrained minimization, which computes search directions by approximating the solution to a generalized quadratic program. In phase II these search directions are feasible descent directions. The algorithm is shown to converge linearly under convexity assumptions. Both theory and numerical experiments suggest that it generally converges faster than the Polak-Trahan-Mayne method of centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Armijo, Minimization of functions having continuous partial derivatives, Pacific J. Math., Vol. 16, pp. 1–3, 1966.

    Google Scholar 

  2. J. Asaadi, A computational comparison of some non-linear programs, Math. Programming, Vol. 4, pp. 144–154, 1973.

    Google Scholar 

  3. C. Berge, Topological Spaces, Macmillan, New York, 1963; Wiley-Interscience, New York, 1983.

    Google Scholar 

  4. R. W. Chaney. On the Pironneau-Polak method of centers, J. Optim. Theory Appl., Vol. 20, No. 3, pp. 269–295, 1976.

    Google Scholar 

  5. F. H. Clarke, Optimization and Nonsmooth Analysis, Wiely-Interscience, New York, 1983.

    Google Scholar 

  6. A. R. Conn, Constrained optimization using a nondifferentiable penalty function, SIAM J. Numer. Anal., Vol. 10, No. 4, pp. 760–784, 1973.

    Google Scholar 

  7. A. R. Conn and T. Pietrzykowski, A penalty function method converging directly to a constrained optimum, SIAM J. Numer. Anal., Vol. 14, No. 2, pp. 348–375, 1977.

    Google Scholar 

  8. M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval Res. Logist. Quart., Vol. 3, pp. 95–110, 1956.

    Google Scholar 

  9. P. E. Gill, S. J. Hammarling, W. Murray, M. A. Saunders, and M. H. Wright, User's Guide for LSSOL (Version 1.0): A Fortran Package for Constrained Linear Least-Squares and Convex Quadratic Programming, Technical Report SOL 86-1, Department of Operations Research, Stanford University, Stanford, January 1986.

    Google Scholar 

  10. S.-P. Han and O. L. Mangasarian, Exact penalty functions in nonlinear programming, Math. Programming, Vol. 17, pp. 251–269, 1979.

    Google Scholar 

  11. J. N. Herskovits, A two-state feasible directions algorithm for nonlinear constrained optimization, Math. Programming, Vol. 36, pp. 19–38, 1986.

    Google Scholar 

  12. J. E. Higgins and E. Polak, Minimizing Pseudo-Convex Functions on Convex Compact Sets, Memorandum No. UCB/ERL M86/53, Electronics Research Laboratory, University of California, Berkeley, 1986.

    Google Scholar 

  13. W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems, Vol. 187, Springer-Verlag, Berlin, 1981.

    Google Scholar 

  14. B. von Hohenbalken, Simplical decomposition in nonlinear programming algorithms, Math. Programming, Vol. 13, pp. 49–68, 1977.

    Google Scholar 

  15. P. Huard, Programmation mathematic convex, Rev. Fr. Inform. Rech. Oper., Vol. 7, pp. 43–59, 1968.

    Google Scholar 

  16. F. John, Extremum problems with inequalities as side conditions, in Courant Anniversary Volume, K. O. Friedrichs, O. E. Neugebauer and J. J. Stoker, eds., Wiley-Interscience, New York, 1948, pp. 187–204.

    Google Scholar 

  17. K. Kiwiel, A method for solving certain quadratic programming problems arising in nonsmooth optimization, IMA J. Numer. Anal., Vol. 6, pp. 137–152, 1986.

    Google Scholar 

  18. K. Kiwiel, A dual method for solving certain positive semi-definite quadratic programming problems, SIAM J. Sci. Statist. Comput, Vol. 10, 1989.

  19. D. G. Luenberger, Introduction to Linear and Nonlinear Systems, Addison-Wesley, New York, 1983.

    Google Scholar 

  20. D. Q. Mayne and E. Polak, A superlinearly convergent algorithm for constrained optimization problems, Math. Programming Stud., Vol. 16, pp. 45–61, 1982.

    Google Scholar 

  21. G. McCormick, Second order conditions for constrained minima, SIAM J. Appl. Math., Vol. 15, pp. 641–652, 1967.

    Google Scholar 

  22. J. J. More and D. C. Sorensen, Computing a trust region step, SIAM J. Sci. Statist. Comput., Vol. 4, No. 3, pp. 553–572, 1983.

    Google Scholar 

  23. E. R. Panier, A. L. Tits, and J. N. Herskovits, A QP-free, globally convergent, locally superlinearly convergent algorithm for inequality constrained optimization, SIAM J. Control Optim., Vol. 26, No. 4, pp. 788–811, 1988.

    Google Scholar 

  24. V. M. Panin, On a second-order method for the discrete min-max problem, USSR Comput. Math. and Math. Phys., Vol. 19, No. 1, pp. 90–100, (1979 (Zh. Vychisl. Mat. i Mat. Fiz., Vol. 19, No. 1, pp. 88–98, 1979).

    Google Scholar 

  25. V. M. Panin, Some methods of solving convex programming problems, USSR Comput. Math. and Math. Phys., Vol. 21, No. 2, pp. 57–72, 1981 (Zh. Vychisl. Mat. i Mat. Fiz., Vol. 21, No. 2, pp. 315–328, 1981).

    Google Scholar 

  26. V. M. Panin, Some methods of solving convex programming problems, USSR Comput. Math. and Math. Phys., Vol. 21, No. 2, pp. 57–72, 1981 (Zh. Vychisl. Mat. i Mat. Fiz., Vol. 21, No. 2, pp. 315–328, 1981).

    Google Scholar 

  27. O. Pironneau and E. Polak, On the rate of convergence of certain methods of centers, Math. Programming, Vol. 2, No. 2, pp. 230–258, 1972.

    Google Scholar 

  28. E. Polak, On the mathematical foundations of nondifferentiable optimization in engineering design, SIAM Rev., pp. 21–91, 1987.

  29. E. Polak, Computational Methods in Optimization: A Unified Approach, Academic Press, New York, 1971.

    Google Scholar 

  30. E. Polak and L. He, A Unified Phase I Phase II Method of Feasible Directions for Semi-infinite Optimization, Memo UCB/ERL M89/7, Electronics Research Laboratory, University of California, Berkeley, 3 February 1989 (to appear J. Optirn. Theory Appl.).

    Google Scholar 

  31. E. Polak, D. Q. Mayne, and J. Higgins, A Superlinearly Convergent Algorithm for Min-Max Problems, Memo No. M86/103, Electronics Research Laboratory, University of California, Berkeley, Berkeley, 15 Nov., 1986. Also in Proc. 28th IEEE CDC, Tampa, FL, 1989. (Full length version to appear in J. Optim. Theory Appl.)

    Google Scholar 

  32. E. Polak, D. Q. Mayne, and J. Higgins, On the Extension of Newton's Method to Semi-Infinite Minimax Problems, Memo UCB/ERL M89/92. Electronics Research Laboratory, University of California, Berkeley, 1 August, 1989. Submitted to SICOPT.

    Google Scholar 

  33. E. Polak, R. Trahan, and D. Q. Mayne, Combined phase I-phase II methods of feasible directions, Math. Programming, Vol. 17, No. 1, pp. 32–61, 1979.

    Google Scholar 

  34. A. Ruszczynski, A regularized decomposition method for minimizing a sum of polyhedral functions, Math. Programming, Vol. 35, pp. 46–61, 1986.

    Google Scholar 

  35. D. M. Topkis and A. Veinott, On the convergence of some feasible directions algorithms for nonlinear programming, SIAM J. Control, Vol. 5, No. 2, pp. 268–79, 1967.

    Google Scholar 

  36. E. J. Wiest Convergence Rate Analyses of Optimization Algorithms for Computer-Aided Design, Memo UCB/ERL M90/94, Electronics Research Laboratory, University of California, Berkeley, 16 October 1990.

    Google Scholar 

  37. E. J. Wiest and E. Polak, On the Rate of Convergence of Two Minimax Algorithms, Memo UCB/ERL M89/111, Electronics Research Laboratory, University of California, Berkeley, 15 August 1989.

    Google Scholar 

  38. G. Zoutendijk, Mathematical Programming Methods, North-Holland, Amsterdam, 1976.

    Google Scholar 

  39. S. I. Zukhovitskii, R. A. Polyak, and M. E. Primak, An algorithm for the solution of convex programming problems, Dokl. Akad. Nauk USSR, Vol. 153, No. 5, pp. 991–1000, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. K. Mitter

The research reported herein was sponsored in part by the Air Force Office of Scientific Research (Grant AFOSR-90-0068), the National Science Foundation (Grant ECS-8713334), and a Howard Hughes Doctoral Fellowship (Hughes Aircraft Co.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, E.J., Polak, E. A generalized quadratic programming-based phase I-phase II method for inequality-constrained optimization. Appl Math Optim 26, 223–252 (1992). https://doi.org/10.1007/BF01371083

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01371083

Key words

Navigation