Skip to main content

Advertisement

Log in

Acid treatment of melanoma cells selects for invasive phenotypes

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Solid tumors become acidic due to hypoxia and upregulated glycolysis. We have hypothesized that this acidosis leads to more aggressive invasive behavior during carcinogenesis (Nature Reviews Cancer 4:891–899, 2004). Previous work on this subject has shown mixed results. While some have observed an induction of metastasis and invasion with acid treatments, others have not. To investigate this, human melanoma cells were acclimated to low pH growth conditions. Significant cell mortality occurred during acclimation, suggesting that acidosis selected for resistant phenotypes. Cells maintained under acidic conditions exhibited a greater range of motility, a reduced capacity to form flank tumors in SCID mice and did not invade more rapidly in vitro, compared to non-selected control cells. However, re-acclimation of these selected cells to physiological pH gave rise to stable populations with significantly higher in vitro invasion. These re-acclimated cells maintained higher invasion and higher motility for multiple generations. Transcriptomic analyses of these three phenotypes revealed significant differences, including upregulation of relevant pathways important for tissue remodeling, cell cycle control and proliferation. These results reinforce the hypothesis that acidosis promotes selection of stable, more invasive phenotypes, rather than inductive changes, which would be reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s Modified Eagle’s Medium

MAPK:

Mitogen-activated protein kinase

MMP:

Matrix metalloproteinase

References

  1. Bernards R, Weinberg RA (2002) A progression puzzle. Nature 418:823–823

    Article  PubMed  CAS  Google Scholar 

  2. Yun Z, Giaccia AJ (2003) Tumor deprivation of oxygen and tumor suppressor gene function. Method Mol Biol 223:485–504

    CAS  Google Scholar 

  3. Koumenis C, Alarcon R, Hammond E et al (2001) Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol & Cell Biol 21:1297–1310

    Article  CAS  Google Scholar 

  4. Yasuda S (1995) Hexokinase II and VEGF expression in liver tumors: correlation with hypoxia-inducible factor 1 and its significance. Proc Natl Acad Sci USA 92:5965–5968

    Article  Google Scholar 

  5. Czernin J, Phelps ME (2002) Positron emission tomography scanning: current and future applications. Ann Rev Med 53:89–112

    Article  PubMed  CAS  Google Scholar 

  6. Schornack PA, Gillies RJ (2003) Contributions of cell metabolism and H + diffusion to the acidic pH of tumors. Neoplasia (New York) 5:135–145

    CAS  Google Scholar 

  7. Gillies RJ, Raghunand N, Karczmar G et al (2002) MR Imaging of the tumor microenvironment. J Magn Reson Imaging 16:430–450

    Article  PubMed  Google Scholar 

  8. Park H, Lyons JC, Ohtsubo T et al (1999) Acidic environment leads to p53 dependent induction of apoptosis in human adenoma and carcinoma cell lines: implications for clonal selection during colorectal carcinogenesis. Oncogene 18:3199–3204

    Article  Google Scholar 

  9. Williams AC, Collard TJ, Paraskeva C (1999) An acidic environment leads to p53 dependent induction of apoptosis in human adenoma and carcinoma cell lines: implications for clonal selection during colorectal carcinogenesis. Oncogene 18:3199–3204

    Article  PubMed  CAS  Google Scholar 

  10. Shrode LD, Tapper H, Grinstein S (1997) Role of intracellular pH in proliferation, transformation, and apoptosis. J Bioenerg Biomembr 29:393–399

    Article  PubMed  CAS  Google Scholar 

  11. Park HJ, Lyons JC, Ohtsubo T et al (1999) Acidic environment causes apoptosis by increasing caspase activity. Br J Cancer 80:1892–1897

    Article  PubMed  CAS  Google Scholar 

  12. Gatenby RA, Gawlinski ET (1996) A reaction-diffusion model of cancer invasion. Cancer Res 56:5745–5753

    PubMed  CAS  Google Scholar 

  13. Rozhin J, Sameni M, Ziegler G et al (1994) Pericellular pH affects distribution and secretion of cathepsin B in Malignant Cells. Cancer Res 54:6517–6525

    PubMed  CAS  Google Scholar 

  14. Sounni NE, Noel A (2005) Membrane-Type Matrix Metalloproteinases and Tumor Progression. Biochimie 87:329–342

    Article  PubMed  CAS  Google Scholar 

  15. Martinez-Zaguilan R, Seftor EA, Seftor RE et al (1996) Acidic pH enhances the invasive behavior of human melanoma cells. Clin Exp Metastasis 14:176–186

    Article  PubMed  CAS  Google Scholar 

  16. Rochefort H, Chalbos D, Cunat S et al (2001) Estrogen regulated proteases and antiproteases in ovarian and breast cancer cells. J Steroid Biochem Mol Biol 76:119–124

    Article  PubMed  CAS  Google Scholar 

  17. Ferrier CM, van Muijen GNP, Song CW (1998) Proteases in cutaneous melanoma. Ann Med 30:431–442

    Article  PubMed  CAS  Google Scholar 

  18. Goretzki L (1992) Effective activation of the proenzyme for of the urokinase-type plasminogen activator (pro-uPA) by the cysteine protease cathepsin L. FEBS Lett 297:112–118

    Article  PubMed  CAS  Google Scholar 

  19. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. [Review] [94 refs]. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  20. Schlappack OK, Zimmermann A, Hill RP (1991) Glucose starvation and acidosis: effect on experimental metastatic potential, DNA content and MTX resistance of murine tumour cells. Br J Cancer 64:663–670

    PubMed  CAS  Google Scholar 

  21. Webb SD, Sherratt JA, Fish RG (1999) Alterations in proteolytic acitivity at low pH and its association with invasion: a theoretical model. Clin Exp Metastasis 17:397–407

    Article  PubMed  CAS  Google Scholar 

  22. Rofstad EK, Mathiesen B, Kindem K et al (2006) Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res 66:6699–6707

    Article  PubMed  CAS  Google Scholar 

  23. Krishnamurty C, Rodriguez J, Raghunand N et al (2005) Automatic Lesion tracking in echo-planar diffusion weighted liver MRI: an active countour based approach. Proc Int Soc Magn Reson Med 13:1889

    Google Scholar 

  24. Wolber PK, Whannon KW, Fulmer-Smentek SB et al (2002) Robust local normalization of gene expression microarray data. Agilent Technical Note 1015:1–4

    Google Scholar 

  25. Khatri P, Draghici S, Ostermeier GC et al (2002) Profiling Gene Expression Utilizing Onto-express. Genomics 79:266–270

    Article  PubMed  CAS  Google Scholar 

  26. Diez H, Fischer A, Winkler A et al (2007) Hypoxia-mediated activation of Dll4-Notch-Hey2 signaling in endothelial progenitor cells and adoption of arterial cell fate. Exp Cell Res 313:1–9

    Article  PubMed  CAS  Google Scholar 

  27. Barbera MJ, Puig I, Dominguez D et al (2004) Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene 23:7345–7354

    Article  PubMed  CAS  Google Scholar 

  28. Imai T, Horiuchi A, Wang C et al (2003) Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am J Pathol 163:1437–1447

    PubMed  CAS  Google Scholar 

  29. Miyoshi A, Kitajima Y, Sumi K et al (2004) Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer 90:1265–1273

    Article  PubMed  CAS  Google Scholar 

  30. Helmlinger G, Yuan F, Dellian M et al (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3:177–182

    Article  PubMed  CAS  Google Scholar 

  31. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

NIH R01 CA077575 (RJG); NIH R01 CA093650 (RAG); Beckman Foundation Undergraduate Fellowship (KB); Howard Hughes Medical Institute grant #52003749 (REM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Gillies.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10585_2008_9145_MOESM1_ESM.tif

Supplemental Figure 1. Quantitative fluorescent tracking of invasion. MB-MDA-231 cells were acid-selected and tested for invasive potential exactly as discussed in Materials and Methods for C8161 melanoma cells and Figure 4. (TIF 2043 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moellering, R.E., Black, K.C., Krishnamurty, C. et al. Acid treatment of melanoma cells selects for invasive phenotypes. Clin Exp Metastasis 25, 411–425 (2008). https://doi.org/10.1007/s10585-008-9145-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-008-9145-7

Keywords

Navigation