Skip to main content

Advertisement

Log in

Quantification of PpIX-fluorescence of cerebral metastases: a pilot study

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

5-ALA fluorescence-guided surgery (FGS) is a major advance in neuro-oncological surgery. So far, Protoporphyrin IX (PpIX)-fluorescence has been observed in about half of cerebral metastases resected with routinely equipped microscopes during 5-ALA FGS. The aim of the present pilot study was to quantify PpIX-induced fluorescence of cerebral metastases with a spectrometer. We hypothesize that non-fluorescing metastases under the operating microscope may have spectrometrically measurable levels of fluorescence. A second aim was to analyze correlations between quantified 5-ALA fluorescence and histology or primary tumor type, respectively. Standard FGS was performed in all patients. The fluorescence intensity of the metastasis was semi-quantitatively determined in vivo by a senior surgeon using a special surgical microscope equipped for FGS. A systematic spectrometric ex vivo evaluation of tumor specimens and PpIX-induced fluorescence was performed using a spectrometer connected by optic fibers to a handheld probe. Quantification of 5-ALA-derived fluorescence was measured in a standardized manner with direct contact between mini-spectrometer and metastasis. The difference between the maximum PpIX-fluorescence at 635 nm and the baseline fluorescence was defined as the PpIX fluorescence intensity of the metastasis and given in arbitrary units (AU). Diagnosis of a cerebral metastasis was confirmed by histopathological analysis. A total of 29 patients with cerebral metastases were included. According to neuropathological analysis, 11 patients suffered from non-small cell lung cancer, 10 patients from breast cancer, 6 patients from cancer originating in the gastro-intestinal tract, 1 patient suffered from a malignant melanoma and one patient from renal cancer. The mean age was 63 years (37–81 years). 15 patients were female, 14 patients male. 13 cerebral metastases were considered as ALA-positive by the surgeon. In nine metastases, 5-ALA fluorescence was not visible to the naked eye and could only be detected using the spectrometer. The threshold for an ALA signal rated as “positive” by the surgeon was PpIX fluorescence above 1.1 × 106 AU. The mean PpIX fluorescence of all analyzed cerebral metastases was 1.29 × 106 ± 0.23 × 106 AU. After quantification, we observed a significant difference between the mean 5-ALA-derived fluorescence in NSCLC and breast cancer metastases (Mean Diff: − 1.2 × 106; 95% CI of difference: − 2.2 × 106 to − 0.15 × 106; Šidák-adjusted p = 0.026). In our present pilot series, about half of cerebral metastases showed a 5-ALA fluorescence invisible to the naked eye. Over 50% of these non-fluorescent metastases show a residual 5-ALA fluorescence which can be detected and quantified using a spectrometer. Moreover, the quantified 5-ALA signal significantly differed with respect to the primary tumor of the corresponding cerebral metastasis. Further studies should evaluate the predictive value of the 5-ALA signal and if a quantified 5-ALA signal enables a reliable intraoperative differentiation between residual tumor tissue and edematous brain—in particular in metastases with a residual fluorescence signal invisible to the naked eye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

5-ALA:

5-Aminolevulinic acid

AU:

Arbitrary unit

PpIX:

Protoporphyrin IX

FGS:

Fluorescence guided surgery

NSCLC:

Non-small-cell lung cancer

SCLC:

Small-cell lung cancer

nm:

Nanometer

CI:

Confidence interval

p:

p-value

U.S.:

United States of America

PFS:

Progression-free survival

min:

Minute

e.g.:

Exempli gratia

EGFR:

Epidermal growth factor receptor

ALK:

Anaplastic lymphoma kinase

HER2/neu:

Human epidermal growth factor receptor 2

References

  1. Gavrilovic IT, Posner JB (2005) Brain metastases: epidemiology and pathophysiology. J Neurooncol 75:5–14. https://doi.org/10.1007/s11060-004-8093-6

    Article  PubMed  Google Scholar 

  2. Patchell RA (2003) The management of brain metastases. Cancer Treat Rev 29:533–540

    Article  PubMed  Google Scholar 

  3. Aronson SM, Garcia JH, Aronson BE (1964) Metastatic neoplasms of the brain: their frequency in relation to age. Cancer 17:558–563

    Article  CAS  PubMed  Google Scholar 

  4. Chason JL, Walker FB, Landers JW (1963) Metastatic carcinoma in the central nervous system and dorsal root ganglia. A prospective autopsy study. Cancer 16:781–787

    Article  CAS  PubMed  Google Scholar 

  5. Shojania KG, Burton EC, McDonald KM, Goldman L (2003) Changes in rates of autopsy-detected diagnostic errors over time: a systematic review. JAMA 289:2849–2856. https://doi.org/10.1001/jama.289.21.2849

    Article  PubMed  Google Scholar 

  6. Borgelt B, Gelber R, Kramer S, Brady LW, Chang CH, Davis LW, Perez CA, Hendrickson FR (1980) The palliation of brain metastases: final results of the first two studies by the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 6:1–9

    Article  CAS  PubMed  Google Scholar 

  7. Kocher M, Wittig A, Piroth MD, Treuer H, Seegenschmiedt H, Ruge M, Grosu AL, Guckenberger M (2014) Stereotactic radiosurgery for treatment of brain metastases. A report of the DEGRO Working Group on Stereotactic Radiotherapy. Strahlenther Onkol 190:521–532. https://doi.org/10.1007/s00066-014-0648-7

    Article  PubMed  Google Scholar 

  8. Weller M, van den Bent M, Tonn JC, Stupp R, Preusser M, Cohen-Jonathan-Moyal E, Henriksson R, Le Rhun E, Balana C, Chinot O, Bendszus M, Reijneveld JC, Dhermain F, French P, Marosi C, Watts C, Oberg I, Pilkington G, Baumert BG, Taphoorn MJB, Hegi M, Westphal M, Reifenberger G, Soffietti R, Wick W, European Association for Neuro-Oncology Task Force on G (2017) European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol 18:e315–e329. https://doi.org/10.1016/S1470-2045(17)30194-8

    Article  PubMed  Google Scholar 

  9. Stummer W, Kamp MA (2009) The importance of surgical resection in malignant glioma. Curr Opin Neurol 22:645–649. https://doi.org/10.1097/WCO.0b013e3283320165

    Article  PubMed  Google Scholar 

  10. Kamp MA, Dibue M, Santacroce A, Zella SM, Niemann L, Steiger HJ, Rapp M, Sabel M (2013) The tumour is not enough or is it? Problems and new concepts in the surgery of cerebral metastases. Ecancermedicalscience 7:306. https://doi.org/10.3332/ecancer.2013.306

    Article  PubMed  PubMed Central  Google Scholar 

  11. Soffietti R, Abacioglu U, Baumert B, Combs SE, Kinhult S, Kros JM, Marosi C, Metellus P, Radbruch A, Villa Freixa SS, Brada M, Carapella CM, Preusser M, Le Rhun E, Ruda R, Tonn JC, Weber DC, Weller M (2017) Diagnosis and treatment of brain metastases from solid tumors: guidelines from the European Association of Neuro-Oncology (EANO). Neuro Oncol 19:162–174. https://doi.org/10.1093/neuonc/now241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kocher M, Soffietti R, Abacioglu U, Villa S, Fauchon F, Baumert BG, Fariselli L, Tzuk-Shina T, Kortmann RD, Carrie C, Ben Hassel M, Kouri M, Valeinis E, van den Berge D, Collette S, Collette L, Mueller RP (2011) Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol 29:134–141. https://doi.org/10.1200/JCO.2010.30.1655

    Article  PubMed  Google Scholar 

  13. Mahajan A, Ahmed S, McAleer MF, Weinberg JS, Li J, Brown P, Settle S, Prabhu SS, Lang FF, Levine N, McGovern S, Sulman E, McCutcheon IE, Azeem S, Cahill D, Tatsui C, Heimberger AB, Ferguson S, Ghia A, Demonte F, Raza S, Guha-Thakurta N, Yang J, Sawaya R, Hess KR, Rao G (2017) Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: a single-centre, randomised, controlled, phase 3 trial. Lancet Oncol 18:1040–1048. https://doi.org/10.1016/S1470-2045(17)30414-X

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yoo H, Kim YZ, Nam BH, Shin SH, Yang HS, Lee JS, Zo JI, Lee SH (2009) Reduced local recurrence of a single brain metastasis through microscopic total resection. J Neurosurg 110:730–736. https://doi.org/10.3171/2008.8.JNS08448

    Article  PubMed  Google Scholar 

  15. Kamp MA, Dibue-Adjei M, Cornelius JF, Slotty PJ, Steiger HJ, Ahmadi SA, Rapp M, Sabel M (2018) Is it all a matter of size? Impact of maximization of surgical resection in cerebral tumors. Neurosurg Rev. https://doi.org/10.1007/s10143-018-0963-z

    Article  PubMed  Google Scholar 

  16. Kamp MA, Dibue M, Niemann L, Reichelt DC, Felsberg J, Steiger HJ, Szelenyi A, Rapp M, Sabel M (2012) Proof of principle: supramarginal resection of cerebral metastases in eloquent brain areas. Acta Neurochir (Wien) 154:1981–1986. https://doi.org/10.1007/s00701-012-1463-5

    Article  Google Scholar 

  17. Kamp MA, Rapp M, Buhner J, Slotty PJ, Reichelt D, Sadat H, Dibue-Adjei M, Steiger HJ, Turowski B, Sabel M (2015) Early postoperative magnet resonance tomography after resection of cerebral metastases. Acta Neurochir (Wien) 157:1573–1580. https://doi.org/10.1007/s00701-015-2479-4

    Article  Google Scholar 

  18. Kamp MA, Rapp M, Slotty PJ, Turowski B, Sadat H, Smuga M, Dibue-Adjei M, Steiger HJ, Szelenyi A, Sabel M (2015) Incidence of local in-brain progression after supramarginal resection of cerebral metastases. Acta Neurochir (Wien) 157:905–910. https://doi.org/10.1007/s00701-015-2405-9 (discussion 910–901)

    Article  Google Scholar 

  19. Kamp MA, Slotty PJ, Cornelius JF, Steiger HJ, Rapp M, Sabel M (2018) The impact of cerebral metastases growth pattern on neurosurgical treatment. Neurosurg Rev 41:77–86. https://doi.org/10.1007/s10143-016-0760-5

    Article  PubMed  Google Scholar 

  20. Olesrud IC, Schulz MK, Marcovic L, Kristensen BW, Pedersen CB, Kristiansen C, Poulsen FR (2019) Early postoperative MRI after resection of brain metastases-complete tumour resection associated with prolonged survival. Acta Neurochir (Wien) 161:555–565. https://doi.org/10.1007/s00701-019-03829-0

    Article  Google Scholar 

  21. Patel AJ, Suki D, Hatiboglu MA, Abouassi H, Shi W, Wildrick DM, Lang FF, Sawaya R (2010) Factors influencing the risk of local recurrence after resection of a single brain metastasis. J Neurosurg 113:181–189. https://doi.org/10.3171/2009.11.JNS09659

    Article  PubMed  Google Scholar 

  22. Suki D, Abouassi H, Patel AJ, Sawaya R, Weinberg JS, Groves MD (2008) Comparative risk of leptomeningeal disease after resection or stereotactic radiosurgery for solid tumor metastasis to the posterior fossa. J Neurosurg 108:248–257. https://doi.org/10.3171/JNS/2008/108/2/0248

    Article  PubMed  Google Scholar 

  23. Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013. https://doi.org/10.3171/jns.2000.93.6.1003

    Article  CAS  PubMed  Google Scholar 

  24. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, Group AL-GS (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401. https://doi.org/10.1016/s1470-2045(06)70665-9

    Article  CAS  PubMed  Google Scholar 

  25. Cornelius JF, Kamp MA, Tortora A, Knipps J, Krause-Molle Z, Beez T, Petridis AK, Sabel M, Schipper J, Steiger HJ (2019) Surgery of small anterior skull base meningiomas by endoscopic 5-aminolevulinic acid fluorescence guidance: first clinical experience. World Neurosurg 122:e890–e895. https://doi.org/10.1016/j.wneu.2018.10.171

    Article  PubMed  Google Scholar 

  26. Cornelius JF, Placke JM, Knipps J, Fischer I, Kamp M, Steiger HJ (2017) Minispectrometer with handheld probe for 5-ALA based fluorescence-guided surgery of brain tumors: preliminary study for clinical applications. Photodiagn Photodyn Ther 17:147–153. https://doi.org/10.1016/j.pdpdt.2016.12.007

    Article  CAS  Google Scholar 

  27. Cornelius JF, Slotty PJ, Kamp MA, Schneiderhan TM, Steiger HJ, El-Khatib M (2014) Impact of 5-aminolevulinic acid fluorescence-guided surgery on the extent of resection of meningiomas—with special regard to high-grade tumors. Photodiagn Photodyn Ther 11:481–490. https://doi.org/10.1016/j.pdpdt.2014.07.008

    Article  CAS  Google Scholar 

  28. Cornelius JF, Slotty PJ, Stoffels G, Galldiks N, Langen KJ, Steiger HJ (2013) 5-Aminolevulinic acid and (18)F-FET-PET as metabolic imaging tools for surgery of a recurrent skull base meningioma. J Neurol Surg B Skull Base 74:211–216. https://doi.org/10.1055/s-0033-1342918

    Article  PubMed  PubMed Central  Google Scholar 

  29. Eicker SO, Floeth FW, Kamp M, Steiger HJ, Hanggi D (2013) The impact of fluorescence guidance on spinal intradural tumour surgery. Eur Spine J 22:1394–1401. https://doi.org/10.1007/s00586-013-2657-0

    Article  PubMed  PubMed Central  Google Scholar 

  30. Evers G, Kamp M, Warneke N, Berdel WE, Sabel M, Stummer W, Ewelt C (2016) 5-aminolaevulinic acid-induced fluorescence in primary central nervous system lymphoma. World Neurosurg. https://doi.org/10.1016/j.wneu.2016.11.011

    Article  PubMed  Google Scholar 

  31. Knipps J, Beseoglu K, Kamp M, Fischer I, Felsberg J, Neumann LM, Steiger HJ, Cornelius JF (2017) Fluorescence behavior and dural infiltration of meningioma analyzed by 5-aminolevulinic acid-based fluorescence: operating microscope versus mini-spectrometer. World Neurosurg 108:118–127. https://doi.org/10.1016/j.wneu.2017.08.140

    Article  PubMed  Google Scholar 

  32. Krause Molle Z, Gierga K, Turowski B, Steiger HJ, Cornelius JF, Rapp M, Sabel M, Kamp MA (2018) 5-ALA-induced fluorescence in leptomeningeal dissemination of spinal malignant glioma. World Neurosurg 110:345–348. https://doi.org/10.1016/j.wneu.2017.10.069

    Article  PubMed  Google Scholar 

  33. Marbacher S, Klinger E, Schwyzer L, Fischer I, Nevzati E, Diepers M, Roelcke U, Fathi AR, Coluccia D, Fandino J (2014) Use of fluorescence to guide resection or biopsy of primary brain tumors and brain metastases. Neurosurg Focus 36:E10. https://doi.org/10.3171/2013.12.FOCUS13464

    Article  PubMed  Google Scholar 

  34. Millesi M, Kiesel B, Mischkulnig M, Martinez-Moreno M, Wohrer A, Wolfsberger S, Knosp E, Widhalm G (2016) Analysis of the surgical benefits of 5-ALA-induced fluorescence in intracranial meningiomas: experience in 204 meningiomas. J Neurosurg 125:1408–1419. https://doi.org/10.3171/2015.12.JNS151513

    Article  CAS  PubMed  Google Scholar 

  35. Yamamoto J, Kitagawa T, Akiba D, Nishizawa S (2015) 5-Aminolevulinic acid-induced fluorescence in cerebellar primary central nervous system lymphoma: a case report and literature review. Turk Neurosurg 25:796–800. https://doi.org/10.5137/1019-5149.JTN.10594-14.1

    Article  PubMed  Google Scholar 

  36. Yamamoto T, Ishikawa E, Miki S, Sakamoto N, Zaboronok A, Matsuda M, Akutsu H, Nakai K, Tsuruta W, Matsumura A (2015) Photodynamic diagnosis using 5-aminolevulinic acid in 41 biopsies for primary central nervous system lymphoma. Photochem Photobiol 91:1452–1457. https://doi.org/10.1111/php.12510

    Article  CAS  PubMed  Google Scholar 

  37. Belloch JP, Rovira V, Llacer JL, Riesgo PA, Cremades A (2014) Fluorescence-guided surgery in high grade gliomas using an exoscope system. Acta Neurochir (Wien) 156:653–660. https://doi.org/10.1007/s00701-013-1976-6

    Article  Google Scholar 

  38. Coburger J, Engelke J, Scheuerle A, Thal DR, Hlavac M, Wirtz CR, Konig R (2014) Tumor detection with 5-aminolevulinic acid fluorescence and Gd-DTPA-enhanced intraoperative MRI at the border of contrast-enhancing lesions: a prospective study based on histopathological assessment. Neurosurg Focus 36:E3. https://doi.org/10.3171/2013.11.FOCUS13463

    Article  PubMed  Google Scholar 

  39. Kamp MA, Grosser P, Felsberg J, Slotty PJ, Steiger HJ, Reifenberger G, Sabel M (2012) 5-aminolevulinic acid (5-ALA)-induced fluorescence in intracerebral metastases: a retrospective study. Acta Neurochir (Wien) 154:223–228. https://doi.org/10.1007/s00701-011-1200-5 (discussion 228)

    Article  Google Scholar 

  40. Piquer J, Llacer JL, Rovira V, Riesgo P, Rodriguez R, Cremades A (2014) Fluorescence-guided surgery and biopsy in gliomas with an exoscope system. Biomed Res Int 2014:207974. https://doi.org/10.1155/2014/207974

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schucht P, Beck J, Vajtai I, Raabe A (2011) Paradoxical fluorescence after administration of 5-aminolevulinic acid for resection of a cerebral melanoma metastasis. Acta Neurochir (Wien) 153:1497–1499. https://doi.org/10.1007/s00701-011-0991-8

    Article  Google Scholar 

  42. Utsuki S, Miyoshi N, Oka H, Miyajima Y, Shimizu S, Suzuki S, Fujii K (2007) Fluorescence-guided resection of metastatic brain tumors using a 5-aminolevulinic acid-induced protoporphyrin IX: pathological study. Brain Tumor Pathol 24:53–55. https://doi.org/10.1007/s10014-007-0223-3

    Article  CAS  PubMed  Google Scholar 

  43. Valdes PA, Leblond F, Kim A, Harris BT, Wilson BC, Fan X, Tosteson TD, Hartov A, Ji S, Erkmen K, Simmons NE, Paulsen KD, Roberts DW (2011) Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker. J Neurosurg 115:11–17. https://doi.org/10.3171/2011.2.JNS101451

    Article  PubMed  PubMed Central  Google Scholar 

  44. Widhalm G, Minchev G, Woehrer A, Preusser M, Kiesel B, Furtner J, Mert A, Di Ieva A, Tomanek B, Prayer D, Marosi C, Hainfellner JA, Knosp E, Wolfsberger S (2012) Strong 5-aminolevulinic acid-induced fluorescence is a novel intraoperative marker for representative tissue samples in stereotactic brain tumor biopsies. Neurosurg Rev 35:381–391. https://doi.org/10.1007/s10143-012-0374-5 (discussion 391)

    Article  PubMed  Google Scholar 

  45. Kamp MA, Fischer I, Buhner J, Turowski B, Cornelius JF, Steiger HJ, Rapp M, Slotty PJ, Sabel M (2016) 5-ALA fluorescence of cerebral metastases and its impact for the local-in-brain progression. Oncotarget. https://doi.org/10.18632/oncotarget.11488

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kamp MA, Munoz-Bendix C, Mijderwijk HJ, Turowski B, Dibue-Adjei M, von Sass C, Cornelius JF, Steiger HJ, Rapp M, Sabel M (2019) Is 5-ALA fluorescence of cerebral metastases a prognostic factor for local recurrence and overall survival? J Neurooncol 141:547–553. https://doi.org/10.1007/s11060-018-03066-y

    Article  CAS  PubMed  Google Scholar 

  47. Arjona SG, Almunia ML, Dominguez JAI, Sanchez OD, Villalonga P, Villalonga-Planells R, Lopetegui JP, Escalas JB, Barcelo AM, Doval MB (2019) Comparison of commercial 5-aminolevulinic acid (Gliolan(R)) and the pharmacy-compounded solution fluorescence in glioblastoma. Acta Neurochir (Wien). https://doi.org/10.1007/s00701-019-03930-4

    Article  Google Scholar 

  48. Kamp MA, Santacroce A, Zella S, Reichelt DC, Felsberg J, Steiger HJ, Cornelius JF, Sabel M (2012) Is it a glioblastoma? In dubio pro 5-ALA! Acta Neurochir (Wien) 154:1269–1273. https://doi.org/10.1007/s00701-012-1369-2

    Article  Google Scholar 

  49. Kamp MA, Krause Molle Z, Munoz-Bendix C, Rapp M, Sabel M, Steiger HJ, Cornelius JF (2018) Various shades of red-a systematic analysis of qualitative estimation of ALA-derived fluorescence in neurosurgery. Neurosurg Rev 41:3–18. https://doi.org/10.1007/s10143-016-0745-4

    Article  PubMed  Google Scholar 

  50. Kamp MAR, Cornelius JF, Steiger HJ, Sabel M (2019) 5-Aminolaevulinic acid and brain metastases. In: Hadjipanayis CGS (ed) Fluorescence-guided neurosurgery: neuro-oncology and cerebrovascular application. Thieme, New York, Stuttgart, Delhi, Rio de Janerio, pp 39–43

    Google Scholar 

  51. Kamp MA, Krause Molle Z, Munoz-Bendix C, Rapp M, Sabel M, Steiger HJ, Cornelius JF (2016) Various shades of red-a systematic analysis of qualitative estimation of ALA-derived fluorescence in neurosurgery. Neurosurg Rev. https://doi.org/10.1007/s10143-016-0745-4

    Article  PubMed  Google Scholar 

  52. Berghoff AS, Rajky O, Winkler F, Bartsch R, Furtner J, Hainfellner JA, Goodman SL, Weller M, Schittenhelm J, Preusser M (2013) Invasion patterns in brain metastases of solid cancers. Neuro Oncol 15:1664–1672. https://doi.org/10.1093/neuonc/not112

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Maria Smuga and Osman Auale for their help.

Funding

The present study was not funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Knipps.

Ethics declarations

Conflict of interest

Prof. Sabel and PD Dr. Rapp work as consultants for Johnson & Johnson Company and Integra Company. Dr. Dibué-Adjei is an employee of LivaNova PLC, manufacturer of vagus nerve stimulators. All other authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical statement

Informed consent was obtained. The present analysis was performed in accordance with the Declaration of Helsinki and with the acceptance of the local Research Ethics Committee and institutional review board (internal study number: 4266).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knipps, J., Fischer, I., Neumann, L.M. et al. Quantification of PpIX-fluorescence of cerebral metastases: a pilot study. Clin Exp Metastasis 36, 467–475 (2019). https://doi.org/10.1007/s10585-019-09986-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-019-09986-x

Keywords

Navigation