Skip to main content

Advertisement

Log in

Tumor dormancy due to failure of angiogenesis: role of the microenvironment

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Tumor progression is dependent on a number of sequential steps, including initial recruitment of blood vessels (i.e., angiogenic switch). Failure of a microscopic tumor to complete one or more of these early steps may lead to delayed clinical manifestation of the cancer. In this review we summarize some of the clinical and experimental evidence suggesting that microscopic human cancers can remain in an asymptomatic, non-detectable, and occult state for the life of a person or animal. We present three clinical cases where tumors present shortly after an accidental trauma in otherwise healthy individuals. We also review current experimental human tumor dormancy models with special emphasis on the angiogenic switch which closely recapitulates clinically observed delay in tumor recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Larsen I, Smastuen M, Parkin D et al (2007) Cancer in Norway 2006- Cancer incidence, mortality, survival and prevalence in Norway. Cancer Registry of Norway, Oslo

    Google Scholar 

  2. Tabar L, Vitak B, Chen HH et al (2000) The Swedish Two-County Trial twenty years later. Updated mortality results and new insights from long-term follow-up. Radiol Clin North Am 38(4):625–651. doi:10.1016/S0033-8389(05)70191-3

    Article  PubMed  CAS  Google Scholar 

  3. Black WC, Welch HG (1993) Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy. N Engl J Med 328(17):1237–1243. doi:10.1056/NEJM199304293281706

    Article  PubMed  CAS  Google Scholar 

  4. Nielsen M, Thomsen JL, Primdahl S et al (1987) Breast cancer and atypia among young and middle-aged women: a study of 110 medicolegal autopsies. Br J Cancer 56(6):814–819

    PubMed  CAS  Google Scholar 

  5. Sanchez-Chapado M, Olmedilla G, Cabeza M et al (2003) Prevalence of prostate cancer and prostatic intraepithelial neoplasia in Caucasian Mediterranean males: an autopsy study. Prostate 54(3):238–247. doi:10.1002/pros.10177

    Article  PubMed  Google Scholar 

  6. Harach HR, Franssila KO, Wasenius VM (1985) Occult papillary carcinoma of the thyroid. A “normal” finding in Finland. A systematic autopsy study. Cancer 56(3):531–538. doi:10.1002/1097-0142(19850801)56:3<531::AID-CNCR2820560321>3.0.CO;2-3

    Google Scholar 

  7. Demicheli R, Terenziani M, Valagussa P et al (1994) Local recurrences following mastectomy: support for the concept of tumor dormancy. J Natl Cancer Inst 86(1):45–48. doi:10.1093/jnci/86.1.45

    Article  PubMed  CAS  Google Scholar 

  8. Demicheli R, Abbattista A, Miceli R et al (1996) Time distribution of the recurrence risk for breast cancer patients undergoing mastectomy: further support about the concept of tumor dormancy. Breast Cancer Res Treat 41(2):177–185. doi:10.1007/BF01807163

    Article  PubMed  CAS  Google Scholar 

  9. Demicheli R, Retsky MW, Hrushesky WJ et al (2007) Tumor dormancy and surgery-driven interruption of dormancy in breast cancer: learning from failures. Nat Clin Pract Oncol 4(12):699–710. doi:10.1038/ncponc0999

    Article  PubMed  Google Scholar 

  10. Gao F, Tan SB, Machin D et al (2007) Confirmation of double-peaked time distribution of mortality among Asian breast cancer patients in a population-based study. Breast Cancer Res 9(2):R21. doi:10.1186/bcr1658

    Article  PubMed  Google Scholar 

  11. Coffey JC, Wang JH, Smith MJ et al (2003) Excisional surgery for cancer cure: therapy at a cost. Lancet Oncol 4(12):760–768. doi:10.1016/S1470-2045(03)01282-8

    Article  PubMed  CAS  Google Scholar 

  12. Morihara K, Takenaka H, Morihara T et al (2007) Primary cutaneous anaplastic large cell lymphoma associated with vascular endothelial growth factor arising from a burn scar. J Am Acad Dermatol 57(5 Suppl):S103–S105. doi:10.1016/j.jaad.2006.10.018

    Article  PubMed  Google Scholar 

  13. Kotzen RM, Swanson RM, Milhorat TH et al (1999) Post-traumatic meningioma: case report and historical perspective. J Neurol Neurosurg Psychiatry 66(6):796–798

    Article  PubMed  CAS  Google Scholar 

  14. Oosterling SJ, van der Bij GJ, van Egmond M et al (2005) Surgical trauma and peritoneal recurrence of colorectal carcinoma. Eur J Surg Oncol 31(1):29–37. doi:10.1016/j.ejso.2004.10.005

    Article  PubMed  CAS  Google Scholar 

  15. Gamatsi IE, McCulloch TA, Bailie FB et al (2000) Malignant melanoma in a skin graft: burn scar neoplasm or a transferred melanoma? Br J Plast Surg 53(4):342–344. doi:10.1054/bjps.2000.3322

    Article  PubMed  CAS  Google Scholar 

  16. Flook D, Horgan K, Taylor BA et al (1986) Surgery for malignant melanoma: from which limb should the graft be taken? Br J Surg 73(10):793–795. doi:10.1002/bjs.1800731011

    Article  PubMed  CAS  Google Scholar 

  17. Deelman H (1927) The part played by injury and repair in the development of cancer. Br Med J 1:872

    Google Scholar 

  18. Alexander J, Altemeier W (1964) Suseptibility of injured tissues to hematogenous metastasis: an experimental study. Ann Surg 159:933–944

    Google Scholar 

  19. Hatzis GP, Finn R (2007) Marjolin’s ulcer: a review of the literature and report of a unique patient treated with a CO(2) laser. J Oral Maxillofac Surg 65(10):2099–2105. doi:10.1016/j.joms.2006.07.017

    Article  PubMed  Google Scholar 

  20. Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1(1):46–54. doi:10.1038/35094059

    Article  PubMed  CAS  Google Scholar 

  21. Dolberg DS, Hollingsworth R, Hertle M et al (1985) Wounding and its role in RSV-mediated tumor formation. Science 230(4726):676–678. doi:10.1126/science.2996144

    Article  PubMed  CAS  Google Scholar 

  22. Sieweke MH, Thompson NL, Sporn MB et al (1990) Mediation of wound-related Rous sarcoma virus tumorigenesis by TGF-beta. Science 248(4963):1656–1660. doi:10.1126/science.2163544

    Article  PubMed  CAS  Google Scholar 

  23. Jewell WR, Romsdahl MM (1965) Recurrent malignant disease in operative wounds not due to surgical implantation from the resected tumor. Surgery 58(5):806–809

    PubMed  CAS  Google Scholar 

  24. Meng S, Tripathy D, Frenkel EP et al (2004) Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10(24):8152–8162. doi:10.1158/1078-0432.CCR-04-1110

    Article  PubMed  Google Scholar 

  25. Murthy SM, Goldschmidt RA, Rao LN et al (1989) The influence of surgical trauma on experimental metastasis. Cancer 64(10):2035–2044. doi:10.1002/1097-0142(19891115)64:10<2035::AID-CNCR2820641012>3.0.CO;2-L

    Google Scholar 

  26. Murthy MS, Summaria LJ, Miller RJ et al (1991) Inhibition of tumor implantation at sites of trauma by plasminogen activators. Cancer 68(8):1724–1730. doi:10.1002/1097-0142(19911015)68:8<1724::AID-CNCR2820680813>3.0.CO;2-W

    Google Scholar 

  27. O’Reilly MS, Holmgren L, Shing Y et al (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79(2):315–328. doi:10.1016/0092-8674(94)90200-3

    Article  PubMed  CAS  Google Scholar 

  28. Bogden AE, Moreau JP, Eden PA (1997) Proliferative response of human and animal tumours to surgical wounding of normal tissues: onset, duration and inhibition. Br J Cancer 75(7):1021–1027

    PubMed  CAS  Google Scholar 

  29. Gill M, Dias S, Hattori K et al (2001) Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ Res 88(2):167–174

    PubMed  CAS  Google Scholar 

  30. Benezra R, Rafii S, Lyden D (2001) The Id proteins and angiogenesis. Oncogene 20(58):8334–8341. doi:10.1038/sj.onc.1205160

    Article  PubMed  CAS  Google Scholar 

  31. Abramovitch R, Marikovsky M, Meir G et al (1999) Stimulation of tumour growth by wound-derived growth factors. Br J Cancer 79(9–10):1392–1398. doi:10.1038/sj.bjc.6690223

    Article  PubMed  CAS  Google Scholar 

  32. Indraccolo S, Favaro E, Amadori A (2006) Dormant tumors awaken by a short-term angiogenic burst: the spike hypothesis. Cell Cycle 5(16):1751–1755

    PubMed  CAS  Google Scholar 

  33. Indraccolo S, Stievano L, Minuzzo S et al (2006) Interruption of tumor dormancy by a transient angiogenic burst within the tumor microenvironment. Proc Natl Acad Sci USA 103(11):4216–4221. doi:10.1073/pnas.0506200103

    Article  PubMed  CAS  Google Scholar 

  34. Withers HR, Lee SP (2006) Modeling growth kinetics and statistical distribution of oligometastases. Semin Radiat Oncol 16(2):111–119. doi:10.1016/j.semradonc.2005.12.006

    Article  PubMed  Google Scholar 

  35. Tomiak E, Piccart M, Mignolet F et al (1996) Characterisation of complete responders to combination chemotherapy for advanced breast cancer: a retrospective EORTC Breast Group study. Eur J Cancer 32A(11):1876–1887. doi:10.1016/0959-8049(96)00189-X

    Article  PubMed  CAS  Google Scholar 

  36. Swenerton KD, Legha SS, Smith T et al (1979) Prognostic factors in metastatic breast cancer treated with combination chemotherapy. Cancer Res 39(5):1552–1562

    PubMed  CAS  Google Scholar 

  37. Greenberg PA, Hortobagyi GN, Smith TL et al (1996) Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer. J Clin Oncol 14(8):2197–2205

    PubMed  CAS  Google Scholar 

  38. Folkman J, Heymach J, Kalluri R (2006) Tumor angiogenesis. B.C. Decker, Hamilton, Ontario

    Google Scholar 

  39. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    PubMed  CAS  Google Scholar 

  40. Folkman J (1990) What is the evidence that tumors are angiogenesis dependent?. J Natl Cancer Inst 82(1):4–6. doi:10.1093/jnci/82.1.4

    Article  PubMed  CAS  Google Scholar 

  41. Coman D, Sheldon WF (1946) The significance of hyperemia around tumor implants. Am J Pathol 22:821–31

    PubMed  CAS  Google Scholar 

  42. Warren B (1979) The vascular morphology of tumors. In: Peterson H-I (ed) Tumor blood circulation: angiogenesis, vascular morphology and blood flow of experimental human tumors. CRC Press, Florida, pp 1–47

    Google Scholar 

  43. Ide A, Baker NH, Warren SL (1939) Vascularization of the Brown-Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am J Roentgenol 42:891–899

    Google Scholar 

  44. Algire G, Legallais FY (1947) Growth rate of transplanted tumors in relation to latent period and host vascular reaction. Cancer Res 7:724

    Google Scholar 

  45. Algire G, Chalkely HW, Legallais FY, Park H (1945) Vascular reactions of normal and malignant tumors in vivo: I. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J Natl Cancer Inst 6:73–85

    Google Scholar 

  46. Folkman J (1985) Toward an understanding of angiogenesis: search and discovery. Perspect Biol Med 29(1):10–36

    PubMed  CAS  Google Scholar 

  47. Folkman J, Long DM Jr, Becker FF (1963) Growth and metastasis of tumor in organ culture. Cancer 16:453–67. doi:10.1002/1097-0142(196304)16:4<453::AID-CNCR2820160407>3.0.CO;2-Y

    Google Scholar 

  48. Folkman J, Cole P, Zimmerman S (1966) Tumor behavior in isolated perfused organs: in vitro growth and metastases of biopsy material in rabbit thyroid and canine intestinal segment. Ann Surg 164(3):491–502. doi:10.1097/00000658-196609000-00012

    Article  PubMed  CAS  Google Scholar 

  49. Folkman J (1972) Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175(3):409–416. doi:10.1097/00000658-197203000-00014

    Article  PubMed  CAS  Google Scholar 

  50. Folkman J (1976) The vascularization of tumors. Sci Am 234(5):58–64, 70–3

    Article  PubMed  CAS  Google Scholar 

  51. Folkman J (1970) The intestine as an organ culture. In: Burdette W (ed) Carcinoma of the colon and antecedent epithelium. CC Thomas, Springfield (IL), pp 113–127

    Google Scholar 

  52. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6(4):273–286. doi:10.1038/nrd2115

    Article  PubMed  CAS  Google Scholar 

  53. Folkman J, Brem H (1992) Angiogenesis and inflamation. In: Gallin JLGI, Snyderman R (eds) Inflamation: basic principles and clinical correlates, 2nd edn. Raven Press, New York, pp 821–839

    Google Scholar 

  54. Folkman J (2003) Angiogenesis in arthritis. In: Smolen J, Lipsky P (eds) Targeted therapies in rheumatology. Martin Dunitz, London, pp 111–131

    Google Scholar 

  55. Folkman J, Watson K, Ingber D et al (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339(6219):58–61. doi:10.1038/339058a0

    Article  PubMed  CAS  Google Scholar 

  56. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364 doi:10.1016/S0092-8674(00)80108-7

    Article  PubMed  CAS  Google Scholar 

  57. Torres Filho IP, Leunig M, Yuan F et al (1994) Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice. Proc Natl Acad Sci USA 91(6):2081–2085 doi:10.1073/pnas.91.6.2081

    Article  PubMed  CAS  Google Scholar 

  58. North S, Moenner M, Bikfalvi A (2005) Recent developments in the regulation of the angiogenic switch by cellular stress factors in tumors. Cancer Lett 218(1):1–14 doi:10.1016/j.canlet.2004.08.007

    Article  PubMed  CAS  Google Scholar 

  59. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7(11):834–846 doi:10.1038/nrc2256

    Article  PubMed  CAS  Google Scholar 

  60. Greene HSN (1941) Heterolgous transplantation of mammalian tumors. J Exp Med 73:461–486. doi:10.1084/jem.73.4.461

    Article  PubMed  CAS  Google Scholar 

  61. Gimbrone MA Jr, Aster RH, Cotran RS et al (1969) Preservation of vascular integrity in organs perfused in vitro with a platelet-rich medium. Nature 222(188):33–36. doi:10.1038/222033a0

    Article  PubMed  Google Scholar 

  62. Gimbrone MA Jr, Leapman SB, Cotran RS et al (1972) Tumor dormancy in vivo by prevention of neovascularization. J Exp Med 136(2):261–276. doi:10.1084/jem.136.2.261

    Article  PubMed  Google Scholar 

  63. Hanahan D, Christofori G, Naik P et al (1996) Transgenic mouse models of tumour angiogenesis: the angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur J Cancer 32A(14):2386–2393. doi:10.1016/S0959-8049(96)00401-7

    Article  PubMed  CAS  Google Scholar 

  64. Achilles EG, Fernandez A, Allred EN et al (2001) Heterogeneity of angiogenic activity in a human liposarcoma: a proposed mechanism for “no take” of human tumors in mice. J Natl Cancer Inst 93(14):1075–1081. doi:10.1093/jnci/93.14.1075

    Article  PubMed  CAS  Google Scholar 

  65. Almog N, Henke V, Flores L et al (2006) Prolonged dormancy of human liposarcoma is associated with impaired tumor angiogenesis. Faseb J 20(7):947–949. doi:10.1096/fj.05-3946fje

    Article  PubMed  CAS  Google Scholar 

  66. Naumov GN, Bender E, Zurakowski D et al (2006) A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 98(5):316–325

    Article  PubMed  Google Scholar 

  67. Naumov GN, Akslen LA, Folkman J (2006) Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5(16):1779–1787

    Google Scholar 

  68. Aguirre Ghiso JA, Kovalski K, Ossowski L (1999) Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol 147(1):89–104. doi:10.1083/jcb.147.1.89

    Article  PubMed  CAS  Google Scholar 

  69. Aguirre-Ghiso JA, Liu D, Mignatti A et al (2001) Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell 12(4):863–879

    PubMed  CAS  Google Scholar 

  70. Aguirre-Ghiso JA, Estrada Y, Liu D et al (2003) ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res 63(7):1684–1695

    PubMed  CAS  Google Scholar 

  71. Udagawa T, Fernandez A, Achilles EG et al (2002) Persistence of microscopic human cancers in mice: alterations in the angiogenic balance accompanies loss of tumor dormancy. Faseb J 16(11):1361–1370. doi:10.1096/fj.01-0813com

    Article  PubMed  CAS  Google Scholar 

  72. Watnick RS, Cheng YN, Rangarajan A et al (2003) Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 3(3):219–231. doi:10.1016/S1535-6108(03)00030-8

    Article  PubMed  CAS  Google Scholar 

  73. Naumov GN, Folkman J (2008) Strategies to prolong the nonangiogenic dromant state of human cancer. In: Davis DW, Herbst RS, Abbruzzese JL (eds) Antiangiogenic cancer therapy. CRC Press, Boca Raton, FL, pp 3–21

    Google Scholar 

  74. Nielsen M (1989) Autopsy studies of the occurrence of cancerous, atypical and benign epithelial lesions in the female breast. APMIS Suppl 10:1–56

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. T. Lokeland MD for clinical data on the clinical cases, Dr. L. Bostad MD for the histological pictures, and Dr. R. Watnick for critical reading and editing of this manuscript. We also thank Kristin Johnson for help with graphics. This work was supported by the Breast Cancer Research Foundation, NIH Program Project (grant #P01CA45548), and an Innovator Award from the Department of Defense, The Norwegian Cancer Society and Helse Vest Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George N. Naumov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naumov, G.N., Folkman, J. & Straume, O. Tumor dormancy due to failure of angiogenesis: role of the microenvironment. Clin Exp Metastasis 26, 51–60 (2009). https://doi.org/10.1007/s10585-008-9176-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-008-9176-0

Keywords

Navigation