Skip to main content

Advertisement

Log in

Host Cxcr2-dependent regulation of mammary tumor growth and metastasis

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Host-derived angiogenic and inflammatory tumor supportive microenvironment regulates progression and metastasis, but the molecular mechanism(s) underlying host-tumor interactions remains unclear. Tumor expression of CXCR2 and its ligands have been shown to regulate angiogenesis, invasion, tumor growth, and metastasis. In this report, we hypothesized that host-derived Cxcr2-dependent signaling plays an important role in breast cancer growth and metastasis. Two mammary tumor cell lines Cl66 and 4T1 cells were orthotopically implanted into the mammary fat pad of wild-type and Cxcr2−/− female BALB/c mice. Tumor growth and spontaneous lung metastasis were monitored. Immunohistochemical analyses of the tumor tissues were performed to analyze proliferation, angiogenesis, apoptosis and immune cell infiltration. Our results demonstrated that knock-down of host Cxcr2 decreases tumor growth and metastasis by reducing angiogenesis, proliferation and enhancing apoptosis. Host Cxcr2 plays an important role in governing the pro-inflammatory response in mammary tumors as evaluated by decreased Gr1+ tumor-associated granulocytes, F4/80+ tumor associated macrophages, and CD11b+Gr1+ myeloid derived suppressor cells in Cxcr2−/− mice as compared to control wild-type mice. Together, these results demonstrate that host Cxcr2-dependent signaling regulates mammary tumor growth and metastasis by promoting angiogenesis and pro-inflammatory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 17:10

    Google Scholar 

  2. Jones SE (2008) Metastatic breast cancer: the treatment challenge. Clin Breast Cancer 8(3):224–233

    Article  CAS  PubMed  Google Scholar 

  3. Fidler IJ (2001) Seed and soil revisited: contribution of the organ microenvironment to cancer metastasis. Surg Oncol Clin N Am 10(2):257–269

    CAS  PubMed  Google Scholar 

  4. Langley RR, Fidler IJ (2007) Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr Rev 28(3):297–321

    Article  CAS  PubMed  Google Scholar 

  5. Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411(6835):375–379

    Article  CAS  PubMed  Google Scholar 

  6. Benoy IH, Salgado R, Van DP, Geboers K, Van ME, Scharpe S, Vermeulen PB, Dirix LY (2004) Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin Cancer Res 10(21):7157–7162

    Article  CAS  PubMed  Google Scholar 

  7. Kozlowski L, Zakrzewska I, Tokajuk P, Wojtukiewicz MZ (2003) Concentration of interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-10 (IL-10) in blood serum of breast cancer patients. Rocz Akad Med Bialymst 48:82–84

    CAS  PubMed  Google Scholar 

  8. Sharma B, Nawandar DM, Nannuru KC, Varney ML, Singh RK (2013) Targeting CXCR2 enhances chemotherapeutic response, inhibits mammary tumor growth, angiogenesis and lung metastasis. Mol Cancer Ther 12(5):799–808

    Article  CAS  PubMed  Google Scholar 

  9. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4(7):540–550

    Article  CAS  PubMed  Google Scholar 

  10. Lazennec G, Richmond A (2010) Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med 16(3):133–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Addison CL, Daniel TO, Burdick MD, Liu H, Ehlert JE, Xue YY, Buechi L, Walz A, Richmond A, Strieter RM (2000) The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR + CXC chemokine-induced angiogenic activity. J Immunol 165(9):5269–5277

    Article  CAS  PubMed  Google Scholar 

  12. Heidemann J, Ogawa H, Dwinell MB, Rafiee P, Maaser C, Gockel HR, Otterson MF, Ota DM, Lugering N, Domschke W, Binion DG (2003) Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J Biol Chem 278(10):8508–8515

    Article  CAS  PubMed  Google Scholar 

  13. Nannuru KC, Sharma B, Varney ML, Singh RK (2011) Role of chemokine receptor CXCR2 expression in mammary tumor growth, angiogenesis and metastasis. J Carcinog 10:40. doi:10.4103/1477-3163.92308 Epub@2011 Dec 31.:40-3163

    Article  PubMed Central  PubMed  Google Scholar 

  14. Singh S, Wu S, Varney M, Singh AP, Singh RK (2011) CXCR1 and CXCR2 silencing modulates CXCL8-dependent endothelial cell proliferation, migration and capillary-like structure formation. Microvasc Res 82(3):318–325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Zhou SL, Dai Z, Zhou ZJ, Wang XY, Yang GH, Wang Z, Huang XW, Fan J, Zhou J (2012) Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatology 56(6):2242–2254

    Article  CAS  PubMed  Google Scholar 

  16. Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, Manova-Todorova K, Leversha M, Hogg N, Seshan VE, Norton L, Brogi E et al (2012) A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150(1):165–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell 13(1):23–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Liu L, Li M, Spangler LC, Spear C, Veenstra M, Darnall L, Chang C, Cotleur AC, Ransohoff RM (2013) Functional defect of peripheral neutrophils in mice with induced deletion of CXCR2. Genesis 51(8):587–595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Katoh H, Wang D, Daikoku T, Sun H, Dey SK, Dubois RN (2013) CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell 24(5):631–644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Gregory AD, Houghton AM (2011) Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res 71(7):2411–2416

    Article  CAS  PubMed  Google Scholar 

  21. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78

    Article  CAS  PubMed  Google Scholar 

  22. Sharma B, Singh RK (2011) Emerging candidates in breast cancer stem cell maintenance, therapy resistance and relapse. J Carcinog 10:36. doi:10.4103/1477-3163.91119 Epub@2011 Dec 22.:36-3163

    Article  PubMed Central  PubMed  Google Scholar 

  23. Cacalano G, Lee J, Kikly K, Ryan AM, Pitts-Meek S, Hultgren B, Wood WI, Moore MW (1994) Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science 265(5172):682–684

    Article  CAS  PubMed  Google Scholar 

  24. Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52(6):1399–1405

    CAS  PubMed  Google Scholar 

  25. Wilson TJ, Nannuru KC, Futakuchi M, Sadanandam A, Singh RK (2008) Cathepsin G enhances mammary tumor-induced osteolysis by generating soluble receptor activator of nuclear factor-{kappa}B ligand. Cancer Res 68(14):5803–5811

    Article  CAS  PubMed  Google Scholar 

  26. Varney ML, Johansson SL, Singh RK (2006) Distinct expression of CXCL8 and its receptors CXCR1 and CXCR2 and their association with vessel density and aggressiveness in malignant melanoma. Am J Clin Pathol 125(2):209–216

    Article  CAS  PubMed  Google Scholar 

  27. Abe F, Dafferner AJ, Donkor M, Westphal SN, Scholar EM, Solheim JC, Singh RK, Hoke TA, Talmadge JE (2010) Myeloid-derived suppressor cells in mammary tumor progression in FVB Neu transgenic mice. Cancer Immunol Immunother 59(1):47–62

    Article  CAS  PubMed  Google Scholar 

  28. Brigati C, Noonan DM, Albini A, Benelli R (2002) Tumors and inflammatory infiltrates: friends or foes? Clin Exp Metastasis 19(3):247–258

    Article  CAS  PubMed  Google Scholar 

  29. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444

    Article  CAS  PubMed  Google Scholar 

  31. Singh S, Varney M, Singh RK (2009) Host CXCR2-dependent regulation of melanoma growth, angiogenesis, and experimental lung metastasis. Cancer Res 69(2):411–415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52(6):1399–1405

    CAS  PubMed  Google Scholar 

  33. Strieter RM, Burdick MD, Mestas J, Gomperts B, Keane MP, Belperio JA (2006) Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer 42(6):768–778

    Article  CAS  PubMed  Google Scholar 

  34. Reutershan J, Morris MA, Burcin TL, Smith DF, Chang D, Saprito MS, Ley K (2006) Critical role of endothelial CXCR2 in LPS-induced neutrophil migration into the lung. J Clin Invest 116(3):695–702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Cardona AE, Sasse ME, Liu L, Cardona SM, Mizutani M, Savarin C, Hu T, Ransohoff RM (2008) Scavenging roles of chemokine receptors: chemokine receptor deficiency is associated with increased levels of ligand in circulation and tissues. Blood 112(2):256–263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Jamieson T, Clarke M, Steele CW, Samuel MS, Neumann J, Jung A, Huels D, Olson MF, Das S, Nibbs RJ, Sansom OJ (2012) Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. J Clin Invest 122(9):3127–3144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M, Wicinski J, Cabaud O, Charafe-Jauffret E, Birnbaum D, Guan JL, Dontu G et al (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 120(2):485–497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Singh JK, Farnie G, Bundred NJ, Simoes BM, Shergill A, Landberg G, Howell SJ, Clarke RB (2013) Targeting CXCR1/2 Significantly Reduces Breast Cancer Stem Cell Activity and Increases the Efficacy of Inhibiting HER2 via HER2-Dependent and -Independent Mechanisms. Clin Cancer Res 19(3):643–656

    Article  CAS  PubMed  Google Scholar 

  39. Singh S, Nannuru KC, Sadanandam A, Varney ML, Singh RK (2009) CXCR1 and CXCR2 enhances human melanoma tumourigenesis, growth and invasion. Br J Cancer 100(10):1638–1646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Singh S, Sadanandam A, Nannuru KC, Varney ML, Mayer-Ezell R, Bond R, Singh RK (2009) Small-molecule antagonists for CXCR2 and CXCR1 inhibit human melanoma growth by decreasing tumor cell proliferation, survival, and angiogenesis. Clin Cancer Res 15(7):2380–2386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Liu X, Peng J, Sun W, Yang S, Deng G, Li F, Cheng JW, Gordon JR (2012) G31P, an antagonist against CXC chemokine receptors 1 and 2, inhibits growth of human prostate cancer cells in nude mice. Tohoku J Exp Med 228(2):147–156

    Article  CAS  PubMed  Google Scholar 

  42. Allegretti M, Cesta MC, Garin A, Proudfoot AE (2012) Current status of chemokine receptor inhibitors in development. Immunol Lett 145(1–2):68–78

    Article  CAS  PubMed  Google Scholar 

  43. Nair P, Gaga M, Zervas E, Alagha K, Hargreave FE, O’Byrne PM, Stryszak P, Gann L, Sadeh J, Chanez P (2012) Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: a randomized, placebo-controlled clinical trial. Clin Exp Allergy 42(7):1097–1103

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Susan G. Komen for the Cure Grant KG090860 COBRE Grant RR021937 (Nebraska Center for Nanomedicine), and U54CA163120 and Cancer Center Support Grant (P30CA036727) from National Cancer Institute, National Institutes of Health. Bhawna Sharma was supported through University of Nebraska Medical Center Graduate Student Fellowship/Assistantship. R. K. Singh Grandly Supported by Susan G. Komen for the Cure grant KG090860.

Conflict of interest

Authors disclose no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 199 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, B., Nannuru, K.C., Varney, M.L. et al. Host Cxcr2-dependent regulation of mammary tumor growth and metastasis. Clin Exp Metastasis 32, 65–72 (2015). https://doi.org/10.1007/s10585-014-9691-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-014-9691-0

Keywords

Navigation