Skip to main content

Advertisement

Log in

Nuclear localization of Kaiso promotes the poorly differentiated phenotype and EMT in infiltrating ductal carcinomas

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The expression and biological consequences of Kaiso, a novel bi-modal transcription factor, in infiltrating ductal carcinomas (IDCs) have not been widely investigated. In the present study, we determined Kaiso expression and subcellular localization in 146 normal tissues, 376 IDCs, and 85 lymph node metastases. In IDCs, there was higher Kaiso expression in both the cytoplasmic and nuclear compartments, which correlated with age <48 (cytoplasmic p < 0.0093; nuclear p < 0.0001) and moderate differentiation (cytoplasmic p < 0.0042; nuclear p < 0.0001), as determined by Chi square analysis. However, only nuclear Kaiso correlated with poor prognostic factors, i.e., race (African Americans) (p < 0.0001), poor differentiation (p < 0.0001), and metastases (p < 0.0001). Nuclear Kaiso was also associated with worse overall survival (p < 0.0019), with African American patients displaying worse survival rates relative to Caucasian patients (p < 0.029). MCF-7 (non-metastatic), MDA-MB-468 (few metastases), and MDA-MB-231 (highly metastatic) breast cancer cells demonstrated increasing Kaiso levels, with more nuclear localization in the highly metastatic cell line. Over-expression of Kaiso in MCF-7 cells increased cell migration and invasion, but treatment of MDA-MB-468 and MDA-MB-231 cells with si-Kaiso decreased cell migration and invasion and induced expression of E-cadherin RNA and protein. E-cadherin re-expression was associated with a reversal of mesenchymal associated cadherins, N-cadherin and cadherin 11, as well as decreased vitamin expression. Further, Kaiso directly bound to methylated sequences in the E-cadherin promoter, an effect prevented by 5-aza-2-deoxycytidine. Immunofluorescence co-staining of poorly differentiated IDCs demonstrated that nuclear Kaiso is associated with a loss of E-cadherin expression. These findings support a role for Kaiso in promoting aggressive breast tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

IDC:

Infiltrating ductal carcinoma

BTB-POZ:

Broad complex, tramtrak bric-a-brac/pox virus, and zinc finger subfamily of zinc-finger proteins

CDH1 :

Cadherin-1 gene

EMT:

Epithelial to mesenchymal transition

TMA:

Tissue microarray

siRNA:

Small-interfering RNA

RFP:

Red fluorescence protein

PMSF:

Phenylmethylsulfonyl fluoride

DAPI:

2,4-Diamidino-2-phenylindole

qRT-PCR:

Quantitative real-time PCR

EGFR:

Epidermal growth factor receptor

5-aza:

5-Aza-2-deoxycytidine

References

  1. DeSantis C et al (2011) Breast cancer statistics. CA-Cancer J Clin 61(6):409–418

    Article  PubMed  Google Scholar 

  2. Amirikia KC et al (2011) Higher population-based incidence rates of triple-negative breast cancer among young African-American women: implications for breast cancer screening recommendations. Cancer 117(12):2747–2753

    Article  PubMed Central  PubMed  Google Scholar 

  3. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695

    Article  CAS  PubMed  Google Scholar 

  4. Hiscox S et al (2006) Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation. Int J Cancer 118(2):290–301

    Article  CAS  PubMed  Google Scholar 

  5. Zou D et al (2009) Epigenetic silencing in non-neoplastic epithelia identifies E-cadherin (CDH1) as a target for chemoprevention of lobular neoplasia. J Pathol 218(2):265–272

    Article  CAS  PubMed  Google Scholar 

  6. Brenton JD et al (2005) Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol 23(29):7350–7360

    Article  CAS  PubMed  Google Scholar 

  7. Caldeira JR et al (2006) CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer 6:48

    Article  PubMed Central  PubMed  Google Scholar 

  8. Chao YL, Shepard CR, Wells A (2010) Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol Cancer 9:179

    Article  PubMed Central  PubMed  Google Scholar 

  9. Lopes EC et al (2008) Kaiso contributes to DNA methylation-dependent silencing of tumor suppressor genes in colon cancer cell lines. Cancer Res 68(18):7258–7263

    Article  CAS  PubMed  Google Scholar 

  10. Dalla-Favera R et al (1994) BCL-6 and the molecular pathogenesis of B-cell lymphoma. Cold Spring Harb Symp Quant Biol 59:117–123

    Article  CAS  PubMed  Google Scholar 

  11. Ye BH et al (1993) Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 5134:747–750

    Article  Google Scholar 

  12. Daniel JM, Reynolds AB (1999) The catenin p120(ctn) interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol Cell Biol 19(5):3614–3623

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Cofre J, et al (2012) Knock-down of Kaiso induces proliferation and blocks granulocytic differentiation in blast crisis of chronic myeloid leukemia. Cancer cell international 12 1: 28

  14. Dai SD et al (2009) Cytoplasmic Kaiso is associated with poor prognosis in non-small cell lung cancer. BMC Cancer 9:178

    Article  PubMed Central  PubMed  Google Scholar 

  15. Prokhortchouk A et al (2006) Kaiso-deficient mice show resistance to intestinal cancer. Mol Cell Biol 26(1):199–208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Soubry A et al (2005) Expression and nuclear location of the transcriptional repressor Kaiso is regulated by the tumor microenvironment. Cancer Res 65(6):2224–2233

    Article  CAS  PubMed  Google Scholar 

  17. Jones J et al (2012) Nuclear Kaiso indicates aggressive prostate cancers and promotes migration and invasiveness of prostate cancer cells. Am J Pathol 181(5):1836–1846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Prokhortchouk A et al (2001) The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev 15(13):1613–1618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kim SW et al (2004) Non-canonical Wnt signals are modulated by the Kaiso transcriptional repressor and p120-catenin. Nat Cell Biol 6(12):1212–1220

    Article  CAS  PubMed  Google Scholar 

  20. Spring CM et al (2005) The catenin p120ctn inhibits Kaiso-mediated transcriptional repression of the beta-catenin/TCF target gene matrilysin. Exp Cell Res 305(2):253–265

    Article  CAS  PubMed  Google Scholar 

  21. Donaldson NS, et al (2012) Kaiso represses the cell cycle gene cyclin D1 via sequence-specific and methyl-CpG-dependent mechanisms. PloS one 7 11: e50398

  22. Vermeulen JF, et al (2012) Nuclear Kaiso expression is associated with high grade and triple-negative invasive breast cancer. PLoS One 7 5: e37864

  23. Shang X et al (2012) Rational design of small molecule inhibitors targeting RhoA subfamily Rho GTPases. Chem Biol 19(6):699–710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Daniel JM, Ireton RC, Reynolds AB (2001) Monoclonal antibodies to Kaiso: a novel transcription factor and p120ctn-binding protein. Hybridoma 20(3):159–166

    Article  CAS  PubMed  Google Scholar 

  25. Manne U et al (1997) Re: loss of tumor marker-immunostaining intensity on stored paraffin slides of breast cancer. J Natl Cancer Inst 89(8):585–586

    Article  CAS  PubMed  Google Scholar 

  26. We G et al (1998) Immunohistochemical Evaluation of Biomarker Expression in Neoplasia. Humana Press Inc, Totowa

    Google Scholar 

  27. Daniel JM et al (2002) The p120(ctn)-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides. Nucleic Acids Res 30(13):2911–2919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Vermeulen JF et al (2012) Nuclear Kaiso expression is associated with high grade and triple-negative invasive breast cancer. PLoS One 7(5):e37864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Shibata T et al (2004) Cytoplasmic p120ctn regulates the invasive phenotypes of E-cadherin-deficient breast cancer. Am J Pathol 164(6):2269–2278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. van Hengel J et al (1999) Nuclear localization of the p120(ctn) Armadillo-like catenin is counteracted by a nuclear export signal and by E-cadherin expression. Proc Natl Acad Sci USA 96(14):7980–7985

    Article  PubMed Central  PubMed  Google Scholar 

  31. Newman LA (2005) Breast cancer in African-American women. Oncologist 10(1):1–14

    Article  PubMed  Google Scholar 

  32. Newman LA et al (2002) Ethnicity related differences in the survival of young breast carcinoma patients. Cancer 95(1):21–27

    Article  PubMed  Google Scholar 

  33. McBride R et al (2007) Within-stage racial differences in tumor size and number of positive lymph nodes in women with breast cancer. Cancer 110(6):1201–1208

    Article  PubMed  Google Scholar 

  34. Moll R et al (1993) Differential loss of E-cadherin expression in infiltrating ductal and lobular breast carcinomas. Am J Pathol 143(6):1731–1742

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Qureshi HS et al (2006) E-cadherin status in breast cancer correlates with histologic type but does not correlate with established prognostic parameters. Am J Clin Pathol 125(3):377–385

    Article  PubMed  Google Scholar 

  36. Brooks SA, Hall DM (2002) Investigations into the potential role of aberrant N-acetylgalactosamine glycans in tumour cell interactions with basement membrane components. Clin Exp Metastasis 19(6):487–493

    Article  CAS  PubMed  Google Scholar 

  37. Graff JR et al (1995) E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55(22):5195–5199

    CAS  PubMed  Google Scholar 

  38. Maeda M, Johnson KR, Wheelock MJ (2005) Cadherin switching: essential for behavioral but not morphological changes during an epithelium-to-mesenchyme transition. J Cell Sci 118(5):873–887

    Article  CAS  PubMed  Google Scholar 

  39. Rodova M et al (2004) Regulation of the rapsyn promoter by kaiso and delta-catenin. Mol Cell Biol 24(16):7188–7196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Ruzov A et al (2004) Kaiso is a genome-wide repressor of transcription that is essential for amphibian development. Development 131(24):6185–6194

    Article  CAS  PubMed  Google Scholar 

  41. Yoon HG et al (2003) N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol Cell 12(3):723–734

    Article  CAS  PubMed  Google Scholar 

  42. Donaldson NS et al (2012) Kaiso represses the cell cycle gene cyclin D1 via sequence-specific and methyl-CpG-dependent mechanisms. PLoS One 7(11):e50398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Reinhold WC et al (2007) Detailed DNA methylation profiles of the E-cadherin promoter in the NCI-60 cancer cells. Mol Cancer Therapeutics 6(2):391–403

    Article  CAS  Google Scholar 

  44. Hazan RB, Norton L (1998) The epidermal growth factor receptor modulates the interaction of E-cadherin with the actin cytoskeleton. J Biol Chem 273(15):9078–9084

    Article  CAS  PubMed  Google Scholar 

  45. Lo HW et al (2007) Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res 67(19):9066–9076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Nickerson NK et al (2012) Decreased autocrine EGFR signaling in metastatic breast cancer cells inhibits tumor growth in bone and mammary fat pad. PLoS One 7(1):e30255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Wang L et al (2010) Flavonoid baicalein suppresses adhesion, migration and invasion of MDA-MB-231 human breast cancer cells. Cancer Lett 297(1):42–48

    Article  CAS  PubMed  Google Scholar 

  48. Wang S et al (2009) Suppression of growth, migration and invasion of highly-metastatic human breast cancer cells by berbamine and its molecular mechanisms of action. Mol Cancer 8:81

    Article  PubMed Central  PubMed  Google Scholar 

  49. Zhang T et al (2012) Cucurbitacin E inhibits breast tumor metastasis by suppressing cell migration and invasion. Breast Cancer Res Treat 135(2):445–458

    Article  CAS  PubMed  Google Scholar 

  50. Wu JM et al (2008) Heterogeneity of breast cancer metastases: comparison of therapeutic target expression and promoter methylation between primary tumors and their multifocal metastases. Clin Cancer Res 14(7):1938–1946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Asgeirsson KS et al (2000) Altered expression of E-cadherin in breast cancer. Patterns, mechanisms and clinical significance. Eur J Cancer 36(9):1098–1106

    Article  CAS  PubMed  Google Scholar 

  52. Kashiwagi S et al (2010) Significance of E-cadherin expression in triple-negative breast cancer. Br J Cancer 103(2):249–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants G12 RR03059-21A1 (NIH/RCMI) [CY] and a pilot project on U54 CA118948 (NIH/NCI) [CY]. Partial support was received from R01 CA87728 (NIH), Susan G. Komen for the Cure, and the National Foundation for Cancer Research [DRW]. Pre-doctoral fellowship for Jacqueline Jones was supported by UNCF/Merck graduate science initiative. We would like to thank members of the Yates Laboratory for their comments and discussions.

Conflict of interests

The authors have filed a patent application relating to the content of this manuscript but have no further conflicting financial interests

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clayton Yates.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, J., Wang, H., Karanam, B. et al. Nuclear localization of Kaiso promotes the poorly differentiated phenotype and EMT in infiltrating ductal carcinomas. Clin Exp Metastasis 31, 497–510 (2014). https://doi.org/10.1007/s10585-014-9644-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-014-9644-7

Keywords

Navigation