Skip to main content

Advertisement

Log in

Dividing and conquering: controlling advanced melanoma by targeting oncogene-defined subsets

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

For decades, therapy for advanced melanoma has lagged behind most of the cancer field owing to its intrinsic resistance to conventional cytotoxic chemotherapy and limited impact of cytokine-based immunotherapy. The opportunity to develop molecularly targeted therapy emerged with the discovery of activating mutations in BRAF, a component of the long studied MAP kinase pathway. These mutations are found in approximately 50 % of patients with regionally advanced or metastatic melanoma and appear to be one of the initiating steps in the development of primary melanoma. Additional oncogenic events, particularly those that affect tumor suppressor genes, are essential for development of invasive and metastatic melanoma. Nonetheless, mutated BRAF retains its central contribution to melanoma pathophysiology even in advanced stage disease as manifested by the remarkable antitumor effects and alteration the natural history of metastatic melanoma of selective BRAF inhibitors. After initial response, resistance commonly emerges within a few months’ time and the field has focused on delineating molecular mechanisms of resistance toward the goal of improving upon the early therapeutic effects of single agent BRAF inhibition. Combination regimens are currently undergoing clinical investigation. NRAS and CKIT mutant melanoma represent the next oncogene defined melanoma subsets for which initial targeted therapy approaches are being explored, with early evidence suggesting progress with MEK and CKIT inhibitors, respectively. A considerable subset of patients have melanomas that are not defined by the presence of BRAF, NRAS, or CKIT mutations and, thus, the elucidation of the entire melanoma genome is being pursued with the hope of identifying additional therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  2. Balch CM, Gershenwald JE, Soong SJ et al (2009) Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 27:6199–6206

    Article  PubMed  Google Scholar 

  3. Tsao H, Atkins MB, Sober AJ (2004) Management of cutaneous melanoma. N Engl J Med 351:998–1012

    Article  PubMed  CAS  Google Scholar 

  4. Atkins MB, Lotze MT, Dutcher JP et al (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17:2105–2116

    PubMed  CAS  Google Scholar 

  5. Kirkwood JM, Manola J, Ibrahim J, Sondak V, Ernstoff MS, Rao U (2004) A pooled analysis of eastern cooperative oncology group and intergroup trials of adjuvant high-dose interferon for melanoma. Clin Cancer Res 10:1670–1677

    Article  PubMed  CAS  Google Scholar 

  6. Demetri GD, von Mehren M, Blanke CD et al (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472–480

    Article  PubMed  CAS  Google Scholar 

  7. Druker BJ, Talpaz M, Resta DJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037

    Article  PubMed  CAS  Google Scholar 

  8. Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  PubMed  CAS  Google Scholar 

  9. Jakob JA, Bassett RL Jr, Ng CS, et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer. doi:10.1002/cncr.26724

  10. Wilhelm SM, Carter C, Tang L et al (2004) BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–7109

    Article  PubMed  CAS  Google Scholar 

  11. Tsao H, Goel V, Wu H, Yang G, Haluska FG (2004) Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol 122:337–341

    Article  PubMed  CAS  Google Scholar 

  12. Uribe P, Wistuba II, Gonzalez S (2003) BRAF mutation: a frequent event in benign, atypical, and malignant melanocytic lesions of the skin. Am J Dermatopathol 25:365–370

    Article  PubMed  Google Scholar 

  13. Pollock PM, Harper UL, Hansen KS et al (2003) High frequency of BRAF mutations in nevi. Nat Genet 33:19–20

    Article  PubMed  CAS  Google Scholar 

  14. Eisen T, Ahmad T, Flaherty KT et al (2006) Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br J Cancer 95:581–586

    Article  PubMed  CAS  Google Scholar 

  15. Flaherty KT, Schiller J, Schuchter LM et al (2008) A phase I trial of the oral, multikinase inhibitor sorafenib in combination with carboplatin and paclitaxel. Clin Cancer Res 14:4836–4842

    Article  PubMed  CAS  Google Scholar 

  16. Hauschild A, Agarwala SS, Trefzer U et al (2009) Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J Clin Oncol 27:2823–2830

    Article  PubMed  CAS  Google Scholar 

  17. Flaherty KT, Lee SJ, Schuchter LM et al (2010) Final results of E2603: a double-blind, randomized phase III trial comparing carboplatin/paclitaxel with or without sorafenib in metastatic melanoma. J Clin Oncol 28:8511

    Google Scholar 

  18. Ott PA, Hamilton A, Min C et al (2010) A phase II trial of sorafenib in metastatic melanoma with tissue correlates. PLoS One 5:e15588

    Article  PubMed  CAS  Google Scholar 

  19. Bollag G, Hirth P, Tsai J et al (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467:596–599

    Article  PubMed  CAS  Google Scholar 

  20. Heidorn SJ, Milagre C, Whittaker S et al (2010) Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140:209–221

    Article  PubMed  CAS  Google Scholar 

  21. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464:427–430

    Article  PubMed  CAS  Google Scholar 

  22. Flaherty KT, Puzanov I, Kim KB et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819

    Article  PubMed  CAS  Google Scholar 

  23. Sosman JA, Kim KB, Schuchter L et al (2012) Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 366:707–714

    Article  PubMed  CAS  Google Scholar 

  24. Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516

    Article  PubMed  CAS  Google Scholar 

  25. McArthur GA, Puzanov I, Amaravadi R et al (2012) Marked, homogeneous, and early [18F]fluorodeoxyglucose-positron emission tomography responses to vemurafenib in BRAF-mutant advanced melanoma. J Clin Oncol 30(14):1628–1634

    Article  PubMed  CAS  Google Scholar 

  26. Kim K, Flaherty KT, Chapman PB et al (2011) Pattern and outcome of disease progression in phase I study of vemurafenib in patients with metastatic melanoma (MM). J Clin Oncol 29:8519

    Article  Google Scholar 

  27. Trefzer U, Minor D, Ribas A et al (2011) BREAK-2: a Phase IIA trial of the selective BRAF kinase inhibitor GSK2118436 in patients with BRAF mutation-positive (V600E/K) metastatic melanoma. Pigment Cell Melanoma Res 24:1021

    Google Scholar 

  28. Antonescu CR, Besmer P, Guo T et al (2005) Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res 11:4182–4190

    Article  PubMed  CAS  Google Scholar 

  29. von Bubnoff N, Schneller F, Peschel C, Duyster J (2002) BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 359:487–491

    Article  Google Scholar 

  30. Pao W, Miller VA, Politi KA et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:e73

    Article  PubMed  Google Scholar 

  31. Nazarian R, Shi H, Wang Q et al (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977

    Article  PubMed  CAS  Google Scholar 

  32. Johannessen CM, Boehm JS, Kim SY et al (2010) COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468:968–972

    Article  PubMed  CAS  Google Scholar 

  33. Poulikakos PI, Persaud Y, Janakiraman M et al (2011) RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480:387–390

    Article  PubMed  CAS  Google Scholar 

  34. Shi H, Moriceau G, Kong X et al (2012) Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun 3:724

    Article  PubMed  Google Scholar 

  35. McArthur GA, Ribas A, Chapman PB et al (2011) Molecular analyses from a phase I trial of vemurafenib to study mechanism of action and resistance in repeated biopsies from BRAF mutation–positive metastatic melanoma patients. J Clin Oncol 29:8502

    Google Scholar 

  36. Villanueva J, Vultur A, Lee JT et al (2010) Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18:683–695

    Article  PubMed  CAS  Google Scholar 

  37. Paraiso KH, Fedorenko IV, Cantini LP et al (2010) Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br J Cancer 102:1724–1730

    Article  PubMed  CAS  Google Scholar 

  38. Infante JR, Falchook GS, Lawrence DP et al (2011) Phase I/II study to assess safety, pharmacokinetics, and efficacy of the oral MEK 1/2 inhibitor GSK1120212 (GSK212) dosed in combination with the oral BRAF inhibitor GSK2118436 (GSK436). J Clin Oncol 29:8503

    Google Scholar 

  39. Flaherty KI, Infante JR, Falchook G, Weber J, Daud A, Hamid O, Gonzalez R, Lawrence D, Long GV, Burris HA III; Kim KB, Kudchadkar R, Algazi A, Boasberg P, Lewis KD, Sun P, Allred A, Little S, Martin A-M, Lebowitz P, Patel K, Kefford R (2011) Phase I/II study of BRAFi GSK2118436 + MEKi GSK1120212 in patients with BRAF mutant metastatic melanoma who progressed on a prior BRAFi. In: Proceedings of the Society for Melanoma Research

  40. Jia S, Liu Z, Zhang S et al (2008) Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 454:776–779

    PubMed  CAS  Google Scholar 

  41. Nelson AA, Tsao H (2009) Melanoma and genetics. Clin Dermatol 27:46–52

    Article  PubMed  Google Scholar 

  42. Anders L, Ke N, Hydbring P, Choi Y-J, Widlund HR, Chick JM, Zhai H, Vidal M, Gygi SP, Braun P, Sicinski P (2011) A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell 20:620–634

    Article  PubMed  CAS  Google Scholar 

  43. Rosenberg SA, Spiess P, Lafreniere R (1986) A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233:1318–1321

    Article  PubMed  CAS  Google Scholar 

  44. Phan GQ, Yang JC, Sherry RM et al (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 100:8372–8377

    Article  PubMed  CAS  Google Scholar 

  45. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  PubMed  CAS  Google Scholar 

  46. Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith T. Flaherty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flaherty, K.T. Dividing and conquering: controlling advanced melanoma by targeting oncogene-defined subsets. Clin Exp Metastasis 29, 841–846 (2012). https://doi.org/10.1007/s10585-012-9488-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-012-9488-y

Keywords

Navigation