Skip to main content
Log in

MACC1 — more than metastasis? Facts and predictions about a novel gene

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

We recently identified the metastasis-associated in colon cancer 1 (MACC1) gene by a genome-wide search for differentially expressed genes in human colon cancer tissues, metastases, and normal tissues. Based on MACC1 expression in primary colon cancers, which did not present with metastases, our negative and positive prediction for metachronous metastasis was correct in 80% and 74% of cases, respectively. The 5-year-survival was 80% for MACC1 low expressors, but 15% for individuals who showed high MACC1 expression in their primary tumors. MACC1 induces migration, invasion and proliferation in cell culture, and liver and lung metastases in xenograft models. Here, we describe features of MACC1 beyond its utility as an indicator of metastasis. We elucidate its genomic localization and organization, its predicted splice variants, and single nucleotide polymorphisms. We discuss the MACC1 protein domain structure, posttranslational modifications, its conservation through evolution, and some family ties to SH3BP4. Furthermore, we summarize the predicted expressions of MACC1 in normal and malignant human tissues. We also evaluate the MACC1 levels in the context of one of its transcriptional targets, the receptor tyrosine kinase Met that activates the hepatocyte growth factor/Met signaling pathway, leading to enhanced cell motility, invasion, and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stein U, Walther W, Arlt F, Schwabe H, Smith J, Fichtner I, Birchmeier W, Schlag PM (2009) MACC1, a newly identified key regulator of HGF/Met signaling, predicts colon cancer metastasis. Nat Med 15:59–67

    Article  CAS  PubMed  Google Scholar 

  2. Stein U, Smith J, Walther W, Arlt F (2009) MACC1 controls Met—what a difference an Sp1 site makes. Cell Cycle 8:2467–2469

    PubMed  Google Scholar 

  3. Arlt F, Stein U (2009) Colon cancer metastasis: MACC1 and Met as metastatic pacemakers. Int J Biochem Cell Biol (in press)

  4. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4:915–925

    Article  CAS  PubMed  Google Scholar 

  5. Morohara K, Tajima Y, Nakao K, Nishino N, Aoki S, Kato M, Sakamoto M, Yamazaki K, Kaetsu T, Suzuki S et al (2006) Gastric and intestinal phenotypic cell marker expressions in gastric differentiated-type carcinomas: association with E-cadherin expression and chromosomal changes. J Cancer Res Clin Oncol 132:363–375

    Article  CAS  PubMed  Google Scholar 

  6. Harada T, Baril P, Gangeswaran R, Kelly G, Chelala C, Bhakta V, Caulee K, Mahon PC, Lemoine NR (2007) Identification of genetic alterations in pancreatic cancer by the combined use of tissue microdissection and array-based comparative genomic hybridisation. Br J Cancer 96:373–382

    Article  CAS  PubMed  Google Scholar 

  7. Herbergs J, Hopman AH, De Bruïne AP, Ramaekers FC, Arends JW (1996) In situ hybridization and flow cytometric analysis of colorectal tumours suggests two routes of tumourigenesis characterized by gain of chromosome 7 or loss of chromosomes 17 and 18. J Pathol 179:243–247

    Article  CAS  PubMed  Google Scholar 

  8. Aragane H, Sakakura C, Nakanishi M, Yasuoka R, Fujita Y, Taniguchi H, Hagiwara A, Yamaguchi T, Abe T, Inazawa J et al (2001) Chromosomal aberrations in colorectal cancers and liver metastases analyzed by comparative genomic hybridization. Int J Cancer 94:623–629

    Article  CAS  PubMed  Google Scholar 

  9. Diep CB, Parada LA, Teixeira MR, Eknaes M, Nesland JM, Johansson B, Lothe RA (2003) Genetic profiling of colorectal cancer liver metastases by combined comparative genomic hybridization and G-banding analysis. Genes Chromosomes Cancer 36:189–197

    Article  CAS  PubMed  Google Scholar 

  10. Yang J, Mani SA, Weinberg RA (2006) Exploring a new twist on tumor metastasis. Cancer Res 66:4549–4552

    Article  CAS  PubMed  Google Scholar 

  11. Paschos KA, Canovas D, Bird NC (2009) The role of cell adhesion molecules in the progression of colorectal cancer and the development of liver metastasis. Cell Signal 21:665–674

    Article  CAS  PubMed  Google Scholar 

  12. Thierry-Mieg D, Thierry-Mieg J (2006) AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol 7(Suppl 1):S12.1-14

    Google Scholar 

  13. Puntervoll P, Linding R, Gemund C, Chabanis-Davidson S, Mattingsdal M, Cameron S, Martin DMA, Ausiello G, Brannetti B, Costantini A et al (2003) ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 31:3625–3630

    Article  CAS  PubMed  Google Scholar 

  14. Rost B, Yachdav G, Liu J (2004) The predictprotein server. Nucleic Acids Res 32:W321–W326

    Article  CAS  PubMed  Google Scholar 

  15. Dafforn TR, Smith CJI (2004) Natively unfolded domains in endocytosis: hooks, lines and linkers. EMBO Rep 5:1046–1052

    Article  CAS  PubMed  Google Scholar 

  16. Kokoszyńska K, Kryński J, Rychlewski L, Wyrwicz L (2009) Unexpected domain composition of MACC1 links MET signaling and apoptosis. Acta Biochim Pol 56:317–324

    PubMed  Google Scholar 

  17. Ipsaro JJ, Huang L, Mondragon A (2009) Structures of the spectrin-ankyrin interaction binding domains. Blood 113:5385–5393

    Article  CAS  PubMed  Google Scholar 

  18. Wang R, Wei Z, Jin H, Wu H, Yu C, Wen W, Chan L, Wen Z, Zhang M (2009) Autoinhibition of UNC5b revealed by the cytoplasmic domain structure of the receptor. Mol Cell 33:692–703

    Article  CAS  PubMed  Google Scholar 

  19. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33:W116–W120

    Article  CAS  PubMed  Google Scholar 

  20. Reed JC, Doctor KS, Godzik A (2004) The domains of apoptosis: a genomics perspective. Sci STKE 239:re9

    Google Scholar 

  21. Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32:1037–1049

    Article  CAS  PubMed  Google Scholar 

  22. Gupta R, Brunak S (2002) Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput 7:310–322

    Google Scholar 

  23. Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked [beta]-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017–1022

    Article  CAS  PubMed  Google Scholar 

  24. Sayat R, Leber B, Grubac V, Wiltshire L, Persad S (2008) O-GlcNAc-glycosylation of beta-catenin regulates its nuclear localization and transcriptional activity. Exp Cell Res 314:2774–2787

    Article  CAS  PubMed  Google Scholar 

  25. Amanchy R, Periaswamy B, Mathivanan S, Reddy R, Tattikota SG, Pandey A (2007) A curated compendium of phosphorylation motifs. Nat Biotechnol 25:285–286

    Article  CAS  PubMed  Google Scholar 

  26. Obenauer JC, Cantley LC, Yaffe MB (2003) Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31:3635–3641

    Article  CAS  PubMed  Google Scholar 

  27. Dunlevy JR, Berryhill BL, Vergnes JP, SundarRaj N, Hassell JR (1999) Cloning, chromosomal localization, and characterization of cDNA from a novel gene, SH3BP4, expressed by human corneal fibroblasts. Genomics 62:519–524

    Article  CAS  PubMed  Google Scholar 

  28. Tosoni D, Puri C, Confalonieri S, Salcini AE, De Camilli P, Tacchetti C, Di Fiore PP (2005) TTP Specifically Regulates the Internalization of the Transferrin Receptor. Cell 123:875–888

    Article  CAS  PubMed  Google Scholar 

  29. Dunlevy JR, Koppelman ED, Kolberg JB (2005) The expression of a SH3BP4-related protein in retinal cells. Invest Ophtamol Vis Sci 46:E-Abstract 2996

    Google Scholar 

  30. Di Renzo MF, Narsimhan RP, Olivero M, Bretti S, Giordano S, Medico E, Gaglia P, Zara P, Comoglio PM (1991) Expression of the Met/HGF receptor in normal and neoplastic human tissues. Oncogene 6:1997–2003

    PubMed  Google Scholar 

  31. Kolatsi-Joannou M, Moore R, Winyard PJ, Woolf AS (1997) Expression of hepatocyte growth factor/scatter factor and its receptor, MET, suggests roles in human embryonic organogenesis. Pediatr Res 41:657–665

    Article  CAS  PubMed  Google Scholar 

  32. Baldus SE, Kort EJ, Schirmacher P, Dienes HP, Resau JH (2007) Quantification of MET and hepatocyte growth factor/scatter factor expression in colorectal adenomas, carcinomas and non-neoplastic epithelia by quantitative laser scanning microscopy. Int J Oncol 31:199–204

    CAS  PubMed  Google Scholar 

  33. Perrière G, Gouy M (1996) WWW-Query: An on-line retrieval system for biological sequence banks. Biochimie 78:364–369

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank Robert H. Shoemaker, National Cancer Institute-Frederick, Frederick, MD, Franziska Arlt, ECRC/Charité University Medicine Berlin, and Miguel A. Andrade-Navarro, Max-Delbrück-Center for Molecular Medicine, Berlin, for critically reading the manuscript.

Conflict of interest statement

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Stein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, U., Dahlmann, M. & Walther, W. MACC1 — more than metastasis? Facts and predictions about a novel gene. J Mol Med 88, 11–18 (2010). https://doi.org/10.1007/s00109-009-0537-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0537-1

Keywords

Navigation