Skip to main content

Advertisement

Log in

Evaluation of metastatic and angiogenic potentials of human colon carcinoma cells in chick embryo model systems

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Increased metastatic and angiogenic potentials of aggressive human colon carcinoma cells were verified in independent chick embryo models by comparing in vivo highly metastatic SW620 colon carcinoma cell line with its isogenic, non-metastatic SW480 cell variant. In the experimental metastasis model, both cell types rapidly arrested in the chorioallantoic membrane (CAM) vasculature as demonstrated by quantitative PCR and immunohistochemistry. Live cell imaging also indicated that both SW620 and SW480 cells efficiently extravasated from the CAM capillary system. However, only few SW480 cells were present in the CAM tissue after 24–48 h. In contrast, the numbers of SW620 cells increased exponentially, indicating proliferative and survival advantages of metastatic colon carcinoma cells in vivo. Multicellular SW620 foci were identified in close proximity to CAM blood vessels. A positive correlation between increased metastatic ability and VEGF-expression of colon carcinoma SW620 cells was demonstrated by the substantial inhibitory effects of anti-VEGF treatment on the levels of metastatic colonization and density of blood vessels adjacent to tumor cell foci. Furthermore, the chick embryo angiogenesis model confirmed high levels of VEGF-dependent angiogenesis induced by SW620 cells, but not SW480 cells. Thus, chick embryo experimental metastasis and CAM angiogenesis models appear to coordinately reflect critical features of advanced colon carcinomas, i.e., the acquisition of enhanced survival and increased angiogenic potentials, both constituting critical determinants of colon cancer progression. The use of rapid and quantitative chick embryo models might provide alternative approaches to conventional mammalian model systems for screening anti-cancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CAM:

Chorioallantoic membrane

DMEM:

Dulbecco’s MEM

qPCR:

Quantitative PCR

VEGF:

Vascular endothelial growth factor

References

  1. Saif MW (2006) Targeted agents for adjuvant therapy of colon cancer. Clin Colorectal Cancer 6(1):46–51

    Article  PubMed  CAS  Google Scholar 

  2. Kuo TH, Kubota T, Watanabe M et al (1995) Liver colonization competence governs colon cancer metastasis. Proc Natl Acad Sci USA 92(26):12085–12089

    Article  PubMed  CAS  Google Scholar 

  3. Takahashi Y, Kitadai Y, Bucana CD et al (1995) Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 55(18):3964–3968

    PubMed  CAS  Google Scholar 

  4. Frank RE, Saclarides TJ, Leurgans S et al (1995) Tumor angiogenesis as a predictor of recurrence and survival in patients with node-negative colon cancer. Ann Surg 222(6):695–699

    Article  PubMed  CAS  Google Scholar 

  5. Engel CJ, Bennett ST, Chambers AF et al (1996) Tumor angiogenesis predicts recurrence in invasive colorectal cancer when controlled for Dukes staging. Am J Surg Pathol 20(10):1260–1265

    Article  PubMed  CAS  Google Scholar 

  6. Choi HJ, Hyun MS, Jung GJ et al (1998) Tumor angiogenesis as a prognostic predictor in colorectal carcinoma with special reference to mode of metastasis and recurrence. Oncology 55(6):575–581

    Article  PubMed  CAS  Google Scholar 

  7. Takahashi Y, Bucana CD, Cleary KR et al (1998) p53, vessel count, and vascular endothelial growth factor expression in human colon cancer. Int J Cancer 79(1):34–38

    Article  PubMed  CAS  Google Scholar 

  8. Staton CA, Chetwood AS, Cameron IC et al (2007) The angiogenic switch occurs at the adenoma stage of the adenoma carcinoma sequence in colorectal cancer. Gut 56(10):1426–1432

    Article  PubMed  Google Scholar 

  9. Ellis LM, Takahashi Y, Liu W et al (2000) Vascular endothelial growth factor in human colon cancer: biology and therapeutic implications. Oncologist 5(Suppl 1):11–15

    Article  PubMed  CAS  Google Scholar 

  10. Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8(8):579–591

    Article  PubMed  CAS  Google Scholar 

  11. Werther K, Christensen IJ, Brunner N et al (2000) Soluble vascular endothelial growth factor levels in patients with primary colorectal carcinoma. The Danish RANX05 colorectal cancer study group. Eur J Surg Oncol 26(7):657–662

    Article  PubMed  CAS  Google Scholar 

  12. De Vita F, Orditura M, Lieto E et al (2004) Elevated perioperative serum vascular endothelial growth factor levels in patients with colon carcinoma. Cancer 100(2):270–278

    Article  PubMed  Google Scholar 

  13. Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342

    Article  PubMed  CAS  Google Scholar 

  14. Culy C (2005) Bevacizumab: antiangiogenic cancer therapy. Drugs Today (Barc) 41(1):23–36

    Article  CAS  Google Scholar 

  15. Vanhoefer U (2005) Molecular mechanisms and targeting of colorectal cancer. Semin Oncol 32(6 Suppl 8):7–10

    Article  PubMed  CAS  Google Scholar 

  16. Duff SE, Jeziorska M, Rosa DD et al (2006) Vascular endothelial growth factors and receptors in colorectal cancer: implications for anti-angiogenic therapy. Eur J Cancer 42(1):112–117

    Article  PubMed  CAS  Google Scholar 

  17. Morikawa K, Walker SM, Nakajima M et al (1988) Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice. Cancer Res 48(23):6863–6871

    PubMed  CAS  Google Scholar 

  18. Fidler IJ (1991) Orthotopic implantation of human colon carcinomas into nude mice provides a valuable model for the biology and therapy of metastasis. Cancer Metastasis Rev 10(3):229–243

    Article  PubMed  CAS  Google Scholar 

  19. Witty JP, McDonnell S, Newell KJ et al (1994) Modulation of matrilysin levels in colon carcinoma cell lines affects tumorigenicity in vivo. Cancer Res 54(17):4805–4812

    PubMed  CAS  Google Scholar 

  20. Warren RS, Yuan H, Matli MR et al (1995) Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest 95(4):1789–1797

    Article  PubMed  CAS  Google Scholar 

  21. Sampson-Johannes A, Wang W, Shtivelman E (1996) Colonization of human lung grafts in SCID-hu mice by human colon carcinoma cells. Int J Cancer 65(6):864–869

    Article  PubMed  CAS  Google Scholar 

  22. Killion JJ, Radinsky R, Fidler IJ (1998) Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev 17(3):279–284

    Article  PubMed  Google Scholar 

  23. Kuniyasu H, Yasui W, Shinohara H et al (2000) Induction of angiogenesis by hyperplastic colonic mucosa adjacent to colon cancer. Am J Pathol 157(5):1523–1535

    PubMed  CAS  Google Scholar 

  24. Hewitt RE, McMarlin A, Kleiner D et al (2000) Validation of a model of colon cancer progression. J Pathol 192(4):446–454

    Article  PubMed  CAS  Google Scholar 

  25. Ramachandran C, Nair PK, Alamo A et al (2006) Anticancer effects of amooranin in human colon carcinoma cell line in vitro and in nude mice xenografts. Int J Cancer 119(10):2443–2454

    Article  PubMed  CAS  Google Scholar 

  26. Schluter K, Gassmann P, Enns A et al (2006) Organ-specific metastatic tumor cell adhesion and extravasation of colon carcinoma cells with different metastatic potential. Am J Pathol 169(3):1064–1073

    Article  PubMed  CAS  Google Scholar 

  27. Thalheimer A, Otto C, Bueter M et al (2009) The intraportal injection model: a practical animal model for hepatic metastases and tumor cell dissemination in human colon cancer. BMC Cancer 9:29

    Article  PubMed  CAS  Google Scholar 

  28. Thalheimer A, Otto C, Bueter M et al (2009) Tumor cell dissemination in a human colon cancer animal model: orthotopic implantation or intraportal injection? Eur Surg Res 42(3):195–200

    Article  PubMed  CAS  Google Scholar 

  29. Kim J, Yu W, Kovalski K et al (1998) Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay. Cell 94(3):353–362

    Article  PubMed  CAS  Google Scholar 

  30. Zijlstra A, Mellor R, Panzarella G et al (2002) A quantitative analysis of rate-limiting steps in the metastatic cascade using human-specific real-time polymerase chain reaction. Cancer Res 62(23):7083–7092

    PubMed  CAS  Google Scholar 

  31. Mira E, Lacalle RA, Gomez-Mouton C et al (2002) Quantitative determination of tumor cell intravasation in a real-time polymerase chain reaction-based assay. Clin Exp Metastasis 19(4):313–318

    Article  PubMed  CAS  Google Scholar 

  32. Deryugina EI, Zijlstra A, Partridge JJ et al (2005) Unexpected effect of matrix metalloproteinase down-regulation on vascular intravasation and metastasis of human fibrosarcoma cells selected in vivo for high rates of dissemination. Cancer Res 65(23):10959–10969

    Article  PubMed  CAS  Google Scholar 

  33. Hagedorn M, Javerzat S, Gilges D et al (2005) Accessing key steps of human tumor progression in vivo by using an avian embryo model. Proc Natl Acad Sci USA 102(5):1643–1648

    Article  PubMed  CAS  Google Scholar 

  34. Stupack DG, Teitz T, Potter MD et al (2006) Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature 439(7072):95–99

    Article  PubMed  CAS  Google Scholar 

  35. Lewis JD, Destito G, Zijlstra A et al (2006) Viral nanoparticles as tools for intravital vascular imaging. Nat Med 12(3):354–360

    Article  PubMed  CAS  Google Scholar 

  36. Lester RD, Jo M, Montel V et al (2007) uPAR induces epithelial-mesenchymal transition in hypoxic breast cancer cells. J Cell Biol 178(3):425–436

    Article  PubMed  CAS  Google Scholar 

  37. Zijlstra A, Lewis J, Degryse B et al (2008) The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell 13(3):221–234

    Article  PubMed  CAS  Google Scholar 

  38. Chambers AF, Schmidt EE, MacDonald IC et al (1992) Early steps in hematogenous metastasis of B16F1 melanoma cells in chick embryos studied by high-resolution intravital videomicroscopy. J Natl Cancer Inst 84(10):797–803

    Article  PubMed  CAS  Google Scholar 

  39. Koop S, MacDonald IC, Luzzi K et al (1995) Fate of melanoma cells entering the microcirculation: over 80% survive and extravasate. Cancer Res 55(12):2520–2523

    PubMed  CAS  Google Scholar 

  40. Shioda T, Munn LL, Fenner MH et al (1997) Early events of metastasis in the microcirculation involve changes in gene expression of cancer cells. Tracking mRNA levels of metastasizing cancer cells in the chick embryo chorioallantoic membrane. Am J Pathol 150(6):2099–2112

    PubMed  CAS  Google Scholar 

  41. Kobayashi T, Koshida K, Endo Y et al (1998) A chick embryo model for metastatic human prostate cancer. Eur Urol 34(2):154–160

    Article  PubMed  CAS  Google Scholar 

  42. Bobek V, Plachy J, Pinterova D et al (2004) Development of a green fluorescent protein metastatic-cancer chick-embryo drug-screen model. Clin Exp Metastasis 21(4):347–352

    Article  PubMed  CAS  Google Scholar 

  43. Nguyen M, Shing Y, Folkman J (1994) Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc Res 47(1):31–40

    Article  PubMed  CAS  Google Scholar 

  44. Seandel M, Noack-Kunnmann K, Zhu D et al (2001) Growth factor-induced angiogenesis in vivo requires specific cleavage of fibrillar type I collagen. Blood 97(8):2323–2332

    Article  PubMed  CAS  Google Scholar 

  45. Zijlstra A, Seandel M, Kupriyanova TA et al (2006) Proangiogenic role of neutrophil-like inflammatory heterophils during neovascularization induced by growth factors and human tumor cells. Blood 107(1):317–327

    Article  PubMed  Google Scholar 

  46. Deryugina EI, Quigley JP (2008) Chapter 2. Chick embryo chorioallantoic membrane models to quantify angiogenesis induced by inflammatory and tumor cells or purified effector molecules. Methods Enzymol 444:21–41

    Article  PubMed  CAS  Google Scholar 

  47. Leibovitz A, Stinson JC, McCombs WB 3rd et al (1976) Classification of human colorectal adenocarcinoma cell lines. Cancer Res 36(12):4562–4569

    PubMed  CAS  Google Scholar 

  48. Ellis LM, Liu W, Wilson M (1996) Down-regulation of vascular endothelial growth factor in human colon carcinoma cell lines by antisense transfection decreases endothelial cell proliferation. Surgery 120(5):871–878

    Article  PubMed  CAS  Google Scholar 

  49. von Reyher U, Strater J, Kittstein W et al (1998) Colon carcinoma cells use different mechanisms to escape CD95-mediated apoptosis. Cancer Res 58(3):526–534

    Google Scholar 

  50. Hegde P, Qi R, Gaspard R et al (2001) Identification of tumor markers in models of human colorectal cancer using a 19, 200-element complementary DNA microarray. Cancer Res 61(21):7792–7797

    PubMed  CAS  Google Scholar 

  51. Palmer HG, Gonzalez-Sancho JM, Espada J et al (2001) Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. J Cell Biol 154(2):369–387

    Article  PubMed  CAS  Google Scholar 

  52. Tan B, Wang JH, Wu QD et al (2001) Sodium hyaluronate enhances colorectal tumour cell metastatic potential in vitro and in vivo. Br J Surg 88(2):246–250

    Article  PubMed  CAS  Google Scholar 

  53. Sengupta PK, Smith EM, Kim K et al (2003) DNA hypermethylation near the transcription start site of collagen alpha2(I) gene occurs in both cancer cell lines and primary colorectal cancers. Cancer Res 63(8):1789–1797

    PubMed  CAS  Google Scholar 

  54. Wang JH, Manning BJ, Wu QD et al (2003) Endotoxin/lipopolysaccharide activates NF-kappa B and enhances tumor cell adhesion and invasion through a beta 1 integrin-dependent mechanism. J Immunol 170(2):795–804

    PubMed  CAS  Google Scholar 

  55. Ottaiano A, di Palma A, Napolitano M et al (2005) Inhibitory effects of anti-CXCR4 antibodies on human colon cancer cells. Cancer Immunol Immunother 54(8):781–791

    Article  PubMed  CAS  Google Scholar 

  56. Schimanski CC, Schwald S, Simiantonaki N et al (2005) Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer. Clin Cancer Res 11(5):1743–1750

    Article  PubMed  CAS  Google Scholar 

  57. Sonvilla G, Allerstorfer S, Stattner S et al (2008) FGF18 in colorectal tumour cells: autocrine and paracrine effects. Carcinogenesis 29(1):15–24

    Article  PubMed  CAS  Google Scholar 

  58. Walker T, Mitchell C, Park MA et al (2009) Sorafenib and vorinostat kill colon cancer cells by CD95-dependent and -independent mechanisms. Mol Pharmacol 76(2):342–355

    Article  PubMed  CAS  Google Scholar 

  59. Liu K, McDuffie E, Abrams SI (2003) Exposure of human primary colon carcinoma cells to anti-Fas interactions influences the emergence of pre-existing Fas-resistant metastatic subpopulations. J Immunol 171(8):4164–4174

    PubMed  CAS  Google Scholar 

  60. Katayama M, Nakano H, Ishiuchi A et al (2006) Protein pattern difference in the colon cancer cell lines examined by two-dimensional differential in-gel electrophoresis and mass spectrometry. Surg Today 36(12):1085–1093

    Article  PubMed  CAS  Google Scholar 

  61. Conn EM, Botkjaer KA, Kupriyanova TA et al. (2009) Comparative analysis of metastasis variants derived from human prostate carcinoma cells. Roles in intravasation of VEGF-mediated angiogenesis and uPA-mediated invasion. Am J Pathol 175(4):1638–1652

    Google Scholar 

  62. Deryugina EI, Conn EM, Wortmann A et al (2009) Functional role of cell surface CUB domain-containing protein 1 in tumor cell dissemination. Mol Cancer Res 7(8):1197–1211

    Article  PubMed  CAS  Google Scholar 

  63. de Paulis A, Prevete N, Fiorentino I et al (2006) Expression and functions of the vascular endothelial growth factors and their receptors in human basophils. J Immunol 177(10):7322–7331

    PubMed  Google Scholar 

  64. Kanai T, Konno H, Tanaka T et al (1998) Anti-tumor and anti-metastatic effects of human-vascular-endothelial-growth-factor-neutralizing antibody on human colon and gastric carcinoma xenotransplanted orthotopically into nude mice. Int J Cancer 77(6):933–936

    Article  PubMed  CAS  Google Scholar 

  65. Wang S, Liu H, Ren L et al (2008) Inhibiting colorectal carcinoma growth and metastasis by blocking the expression of VEGF using RNA interference. Neoplasia 10(4):399–407

    PubMed  CAS  Google Scholar 

  66. Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12(8):895–904

    Article  PubMed  CAS  Google Scholar 

  67. Horak CE, Steeg PS (2005) Metastasis gets site specific. Cancer Cell 8(2):93–95

    Article  PubMed  CAS  Google Scholar 

  68. Romanoff AL (1960) The avian embryo. The Macmillan, New York

    Google Scholar 

  69. Li A, Varney ML, Singh RK (2001) Expression of interleukin 8 and its receptors in human colon carcinoma cells with different metastatic potentials. Clin Cancer Res 7(10):3298–3304

    PubMed  CAS  Google Scholar 

  70. Fernandez-Garcia NI, Palmer HG, Garcia M et al (2005) 1alpha, 25-Dihydroxyvitamin D3 regulates the expression of Id1 and Id2 genes and the angiogenic phenotype of human colon carcinoma cells. Oncogene 24(43):6533–6544

    PubMed  CAS  Google Scholar 

  71. Shaheen RM, Ahmad SA, Liu W et al (2001) Inhibited growth of colon cancer carcinomatosis by antibodies to vascular endothelial and epidermal growth factor receptors. Br J Cancer 85(4):584–589

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Chen-Xing Li and Lauren Hyden for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena I. Deryugina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cecilia Subauste, M., Kupriyanova, T.A., Conn, E.M. et al. Evaluation of metastatic and angiogenic potentials of human colon carcinoma cells in chick embryo model systems. Clin Exp Metastasis 26, 1033–1047 (2009). https://doi.org/10.1007/s10585-009-9293-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-009-9293-4

Keywords

Navigation