Skip to main content
Log in

Allelic loss at TP53 in metastatic human endometrial carcinomas

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Loss of heterozygosity (LOH) is implicated in the initiation and progression of various human neoplasia, and is observed in both early or in advanced-stage human cancers. The current study was aimed at investigating the frequency of LOH TP53 in human endometrial carcinoma (EC) metastases. LOH was analyzed using 3 intragenic polymorphisms in 38 primary ECs and corresponding metastatic lesions. Allelic loss at intron 1 was detected in 14 out of 38 (37%) primary carcinomas and in 11 out of 38 (29%) metastatic lesions. LOH at intron 1 in primary and metastatic tumors was concomitantly noted in 8 out of 38 (21%) cases. LOH at intron 4 was seen in 46% (17 out of 37) primary ECs and in 35% (13 out of 37) metastatic lesions. LOH at intron 4 in primary tumor/metastasis was concomitantly demonstrated in 27% (10 out of 33) cases. Allelic loss at exon 4 was detected in 5 out of 33 (15%) primary ECs and in one out of 33 (3%) corresponding metastases. Coexistence of LOH TP53 in primary ECs with metastases at intron 1 and intron 4 was observed in three out of 33 (9%) cases. Correlation between allelic loss at intron 1 in primary ECs and corresponding metastases was found (R = 0.475, p = 0.003). Moreover, there was correlation between LOH at intron 1 in metastastic ECs and allelic imbalance at intron 4 in primary uterine tumors (R = 0.416, p = 0.01). There was a relationship between LOH at intron 4 in primary ECs and corresponding metastatic lesions (R = 0.457, p = 0.004). LOH TP53 at intron 4 correlated with the presence of the neoplasm in the uterine cervix (R = 0.319, p = 0.049), and with the non-endometrioid type of primary tumor (R = 0.371, p = 0.024). There was a significant correlation between exon 4 LOH and patient age (less or equal to 50 years and above this age; R = −0.375, p = 0.032). p53 overexpression was present in thirteen out of 38 (34%) cases, both in primary ECs and in metastatic lesions. Overexpression of p53 was higher in non-endometrioid ECs (three out of 5; 60%) than in endometrioid-type uterine tumors (ten out of 33; 30.3%; p = 0.315). p53 overexpression correlated with the presence of cancer in the lumen of fallopian tube(s) (R = 0.032, p = 0.046), and with allelic loss at intron 1 in primary ECs (R = 0.599, p = 0.0001). In conclusion, LOH occurs not only in primary uterine tumors but also in corresponding metastases, with the higher incidence being reported at intron 4 of the TP53. A significant link existed between LOH TP53 at intron 1 and p53 overexpression in primary ECs, but not in the corresponding metastatic lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

LOH:

Loss of heterozygosity

EC:

Endometrial cancer

G1:

Well-differentiated cancer

G2:

Moderately-differentiated cancer

G3:

Poorly-differentiated cancer

IHC:

Immunohistochemistry

RFLP:

Restriction fragment length polymorphism

VNTR:

Variable number of tandem repeats

VSI:

Vascular space invasion

References

  1. De Leo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ (1979) Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA 76:2420–2424

    Article  Google Scholar 

  2. Lane DP (1992) p53, guardian of the genome. Nature 358:15–16

    Article  PubMed  CAS  Google Scholar 

  3. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  4. Bourdon JC (2007) p53 and its isoforms in cancer. Br J Cancer 97:277–282

    Article  PubMed  CAS  Google Scholar 

  5. Balint EE, Vousden KH (2001) Activation and activities of the p53 tumor suppressor protein. Br J Cancer 85:1813–1823

    Article  CAS  Google Scholar 

  6. Lane D (2004) p53 from pathway to therapy. Anthony Dipple Carcinogenesis Award. Carcinogenesis 25:1077–1081

    Article  PubMed  CAS  Google Scholar 

  7. Harris SL, Levine AJ (2005) The p53 pathway: positive and negative feedback loops. Oncogene 24:2899–2908

    Article  PubMed  CAS  Google Scholar 

  8. Guimaraes DP, Hainaut P (2002) TP53: a key gene in human cancer. Biochimie 84:83–93

    Article  PubMed  CAS  Google Scholar 

  9. Soussi T (2007) p53 alterations in human cancer: more questions than answers. Oncogene 26:2145–2156

    Article  PubMed  CAS  Google Scholar 

  10. Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26:2157–2165

    Article  PubMed  CAS  Google Scholar 

  11. Velasco A, Pallares J, Santacana M, Yeramian A, Dolcet X, Eritja N, Puente S, Sorolla A, Llecha N, Matias-Guiu X (2008) Loss of heterozygosity in endometrial carcinoma. Int J Gynecol Pathol 27:305–317

    Article  PubMed  Google Scholar 

  12. Semczuk A, Marzec B, Roessner A, Jakowicki JA, Wojcierowski J, Schneider-Stock R (2002) Loss of heterozygosity of the retinoblastoma gene is correlated with the altered pRb expression in human endometrial cancer. Virchows Arch 441:577–583

    Article  PubMed  CAS  Google Scholar 

  13. Liang SX, Chambers SK, Cheng L, Zhang S, Zhou Y, Zheng W (2004) Endometrial glandular dysplasia: a putative precursor lesion of uterine papillary serous carcinoma. Part II: molecular features. Int J Surg Pathol 12:319–331

    Article  PubMed  CAS  Google Scholar 

  14. Graesslin O, Chantot-Bastaraud S, Lorenzato M, Birembaut P, Quereux C, Darai E (2008) Fluorescence in situ hybridization and immunohistochemical analysis of p53 expression in endometrial cancer: prognostic value and relation to ploidy. Ann Surg Oncol 15:484–492

    Article  PubMed  Google Scholar 

  15. Semczuk A, Marzec B, Skomra D, Roessner A, Cybulski M, Rechberger T, Schneider-Stock R (2005) Allelic loss at TP53 is not related to p53 protein overexpression in primary human endometrial carcinomas. Oncology 69:317–325

    Article  PubMed  CAS  Google Scholar 

  16. World Health Organisation Classification of Tumours. Pathology and genetics of tumors of the breast and female genital organs (2003) Tavassoli FA, Devilee P (ed.), IACR Press, Lyon

  17. Mikuta JJ (1995) Preoperative evaluation and staging of endometrial cancer. Cancer 76(10 suppl.):2041–2043

    Article  PubMed  CAS  Google Scholar 

  18. Hahn M, Serth J, Fislage R, Wolfes H, Allhoff E, Jonas V, Pingoud A (1993) Polymerase chain reaction detection of a highly-polymorphic VNTR segment in intron 1 of the human p53 gene. Clin Chem 39:549–550

    PubMed  CAS  Google Scholar 

  19. Jones MH, Nakamura Y (1992) Detection of loss of heterozygosity at the human TP53 locus using a dinucleotide repeat polymorphism. Genes Chromosomes Cancer 5:89–90

    Article  PubMed  CAS  Google Scholar 

  20. de la Calle-Martin O, Fabregat V, Romero M, Soler J, Vives J, Yague J (1990) AccII polymorphism of the p53 gene. Nucleic Acids Res 18:4963

    Google Scholar 

  21. Alkushi A, Lim P, Coldman A, Huntsman D, Miller D, Gilks CB (2004) Interpretation of p53 immunoreactivity in endometrial carcinoma: establishing a clinically relevant cut-off level. Int J Gynecol Pathol 23:129–137

    Article  PubMed  Google Scholar 

  22. Lasko D, Cavenee W, Nordenskjold M (1991) Loss of constitutional heterozygosity in human cancer. Annu Rev Genet 25:281–314

    Article  PubMed  CAS  Google Scholar 

  23. Ponder B (1998) Gene losses in human tumours. Nature 335:400–402

    Article  Google Scholar 

  24. Knuutila S, Aalto Y, Autio K, Bjorkqvist AM, El-Rifai W, Hemmer S, Huhta T, Kettunen E, Kiuru-Kuhlefelt S, Larramendy ML, Lushnikova T, Monni O, Pere H, Tapper J, Tarkkanen M, Varis A, Wasenius VM, Wolf M, Zhu Y (1999) DNA copy number losses in human neoplasms. Am J Pathol 155:683–694

    PubMed  CAS  Google Scholar 

  25. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823

    Article  PubMed  Google Scholar 

  26. Jones MH, Koi S, Fujimoto I, Hasumi K, Kato K, Nakamura Y (1994) Allelotype of uterine cancer by analysis of RFLP and microsatellite polymorphisms: frequent loss of heterozygosity on chromosome arms 3p, 9q, 10q, and 17p. Genes Chrom Cancer 9:119–123

    Article  PubMed  CAS  Google Scholar 

  27. Li X, Lee NK, Ye YW, Waber PG, Schweitzer C, Cheng QC, Nisen PD (1994) Allelic loss at chromosomes 3p, 8p, 13q, and 17p associated with poor prognosis in head and neck cancer. J Natl Cancer Inst 86:1524–1529

    Article  PubMed  CAS  Google Scholar 

  28. Bourdon J-C, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP, Saville MK, Lane DP (2005) p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19:2122–2137

    Article  PubMed  CAS  Google Scholar 

  29. Heide I, Thiede C, Sonntag T, de Kant E, Neubauer A, Jonas S, Peter FJ, Neuhaus P, Herrmann R, Huhn D, Rochlitz CF (1997) The status of p53 in the metastatic progression of colorectal cancer. Eur J Cancer 33:1314–1322

    Article  PubMed  CAS  Google Scholar 

  30. Baergen RN, Warren CD, Isacson C, Ellenson LH (2001) Early uterine serous carcinoma: clonal origin of extrauterine disease. Int J Gynecol Pathol 20:214–219

    Article  PubMed  CAS  Google Scholar 

  31. Kupryjanczyk J, Thor AD, Beauchamp R, Poremba C, Scully RE, Yandell DW (1996) Ovarian, peritoneal, and endometrial serous carcinoma: clonal origin of multifocal disease. Mod Pathol 9:166–173

    PubMed  CAS  Google Scholar 

  32. Kihana T, Hamada K, Inoue Y, Yano N, Iketani H, Murao S, Ukita M, Matsuura S (1995) Mutation and allelic loss of the p53 gene in endometrial carcinoma. Incidence and outcome in 92 surgical patients. Cancer 76:72–78

    Article  PubMed  CAS  Google Scholar 

  33. Niederacher D, An HX, Camrath S, Dominik SI, Gohring UJ, Oertel A, Grass M, Hantschmann P, Lordnejad MR, Beckmann MW (1998) Loss of heterozygosity of BRCA1, TP53 and TCRD markers analysed in sporadic endometrial cancer. Eur J Cancer 34:1770–1776

    Article  PubMed  CAS  Google Scholar 

  34. Saegusa M, Okayasu I (1997) Bcl-2 is closely correlated with favorable prognostic factors and inversely associated with p53 protein accumulation in endometrial carcinomas: immunohistochemical and polymerase chain reaction/loss of heterozygosity findings. J Cancer Res Clin Oncol 123:429–434

    Article  PubMed  CAS  Google Scholar 

  35. Liang S-H, Clarke MF (2001) Regulation of p53 localization. Eur J Biochem 268:2779–2783

    Article  PubMed  CAS  Google Scholar 

  36. Jeczen R, Skomra D, Cybulski M, Schneider-Stock R, Szewczuk W, Roessner A, Rechberger T, Semczuk A (2007) P53/MDM2 overexpression in metastatic endometrial cancer: correlation with clinicopathological features and patient outcome. Clin Exp Metastasis 24:503–511

    Article  PubMed  CAS  Google Scholar 

  37. Inoue M (2001) Current molecular aspects of the carcinogenesis of the uterine endometrium. Int J Gynecol Cancer 11:339–348

    Article  PubMed  CAS  Google Scholar 

  38. Salvesen HB, Akslen LA (2002) Molecular pathogenesis and prognostic factors in endometrial carcinoma. APMIS 110:673–689

    Article  PubMed  CAS  Google Scholar 

  39. Prat J (2004) Prognostic parameters of endometrial carcinoma. Hum Pathol 35:649–662

    Article  PubMed  Google Scholar 

  40. Doll A, Abal M, Rigau M, Monge M, Gonzalez M, Demajo S, Colas E, Llaurado M, Alazzouzi H, Planaguma J, Lohmann MA, Garcia J, Castellvi S, Ramon y Cajal J, Gil-Moreno A, Xercavins J, Alameda F, Reventos J (2008) Novel molecular profiles of endometrial cancer–new light through old windows. J Steroid Biochem Mol Biol 108:221–229

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the staff of the Department of Pathology, Medial University of Lublin, Lublin, Poland, for the pathological assessment of the material. This research was granted by Medical University of Lublin, Lublin, Poland (Dz. St. 326/07 and 326/08 to A.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Semczuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szewczuk, W., Skomra, D., Cybulski, M. et al. Allelic loss at TP53 in metastatic human endometrial carcinomas. Clin Exp Metastasis 26, 789–796 (2009). https://doi.org/10.1007/s10585-009-9278-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-009-9278-3

Keywords

Navigation