Skip to main content

Advertisement

Log in

Intracellular esterase activity in living cells may distinguish between metastatic and tumor-free lymph nodes

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Background One of the major clinical problems in breast cancer detection is the relatively high incidence of occult lymph node metastases undetectable by standard procedures. Since the ascertainment of breast cancer stage determines the following treatment, such a “hypo-diagnosis” leads to inadequate therapy, and hence is detrimental for the outcome and survival of the patients. The purpose of our study was to investigate functional metabolic characteristics of living cells derived from metastatic and tumor-free lymph nodes of breast cancer (BC) patients. Methods Our methodology is based on the ability of living cells to hydrolyze fluorescein diacetate (FDA) by intracellular esterases and on the association of FDA hydrolysis rates with a specific cell status, both in physiological and pathological conditions. Results The present study demonstrates a significant difference in the ability to utilize FDA by lymph node cells derived from metastatic and tumor-free lymph nodes in general average, as well as in the metastatic and tumor-free lymph nodes of individual patients. Cells from metastatic lymph nodes had a higher capacity for FDA hydrolysis, and increased this activity after additional activation by autologous tumor tissue (tt). The association between increased FDA hydrolysis rate and activated T lymphocytes and antigen-presenting cells (APC) was shown. Conclusion The results of the present study may contribute to predicting the risk of involvement of seemingly “tumor-free” axillary lymph nodes in occult metastatic processes, and to reducing false-negative results of axillary examination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tai P, Yu E, Vinh-Hung V, Cserni G, Vlastos G (2004) Survival of patients with metastatic breast cancer: twenty-year data from two SEER registries. BMC Cancer 4:60–67

    Article  PubMed  Google Scholar 

  2. Tyczynski J, Plesko I, Aareleid T et al (2004) Breast cancer mortality patterns and time trends in 10 new EU member states: mortality declining in young women, but still increasing in the elderly. Int J Cancer 112:1056–1064

    Article  PubMed  CAS  Google Scholar 

  3. Kvalheim G, Naume B, Nesland JM (1999) Minimal residual disease in breast cancer. Cancer Met Rev 18:101–108

    Article  CAS  Google Scholar 

  4. Newman LA, Hunt KK, Buchholz T et al (2000) Presentation, management and outcome of axillary recurrence from breast cancer. Am J Surg 180:252–256

    Article  PubMed  CAS  Google Scholar 

  5. Torrenga H, Fabry H, van der Sijp JRM et al (2004) Omitting axillary lymph node dissection in sentinel node negative breast cancer patients is safe: a long term follow-up analysis. J Surg Oncol 88:4–8

    Article  PubMed  Google Scholar 

  6. Heimann R, Hellman S (2000) Clinical progression of breast cancer malignant behavior: what to expect and when to expect it. J Clin Oncol 18:591–599

    PubMed  CAS  Google Scholar 

  7. Pettit SJ, Seymour K, O’Flaherty E, Kirby JA (2000) Immune selection in neoplasia: towards a microevolutionary model of cancer development. Br J Cancer 82:1900–1906

    Article  PubMed  CAS  Google Scholar 

  8. Santin AD (2000) Lymph node metastases. The importance of the microenvironment. Cancer 88:175–179

    Article  PubMed  CAS  Google Scholar 

  9. Takenoyama M, Yasumoto K, Harada M et al (1996) Expression of activation-related molecules on regional lymph node lymphocytes in human lung cancer. Immunobiology 195:140–151

    PubMed  CAS  Google Scholar 

  10. Romero P, Dunbar PR, Valmori D et al (1998) Ex vivo staining of metastatic lymph nodes by class I major histocompatibility comples tetramers reveals high numbers of antigen-experienced tumor-specific cytolytic T lymphocytes. J Exp Med 188:1641–1650

    Article  PubMed  CAS  Google Scholar 

  11. Muller M, Gounary F, Prifti S et al (1998) Tumor dormancy in bone marrow and lymph nodes: active control of proliferating tumor cells by CD8+ immune T cells. Cancer Res 58:5439–5446

    PubMed  CAS  Google Scholar 

  12. Moriya T, Usami S, Tada H et al (2004) Pathological evaluation of sentinel lymphnodes for breast cancer. Asian J Surg Symp Breast cancer 27:256–261

    Google Scholar 

  13. Camp RL, Rimm EB, Rimm DL (2000) A high number of tumor free axillary lymph nodes from patients with lymph node negative breast carcinoma is associated with poor outcome. Cancer 88:108–113

    Article  PubMed  CAS  Google Scholar 

  14. Kohrt HK, Nouri N, Nowels K, Johnson D, Holmes S, Lee PP (2005) Profile of immune cells in axillary lymph nodes predicts disease-free survival in breast cancer. PLoS Med 2:904–919

    Article  CAS  Google Scholar 

  15. Rahmani H, Deutsch M, Ron I et al (1996) Adaptation of the cellscan technique for the SCM test in breast cancer. Eur J Cancer 32A:1758–1765

    Article  PubMed  CAS  Google Scholar 

  16. Ron IG, Deutsch M, Tirosh R, Weinreb A, Eisenthal A, Chaitchik S (1995) Fluorescence polarization changes in lymphocyte cytoplasm as a diagnostic test for breast carcinoma. Eur J Cancer 31A(6):917–920

    Article  PubMed  CAS  Google Scholar 

  17. Eisenthal A, Marder O, Dotan D et al (1996) Decrease of intracellular fluorescein fluorescence polarization (IFFP) in human peripheral blood lymphocytes undergoing stimulation with phytohemagglutinine (PHA), concanavalin A (ConA), pokeweed mitogen (Pwm) and anti-CD3 antibody. Biol Cell 86:145–150

    Article  PubMed  CAS  Google Scholar 

  18. Kaplan MR, Trubnikov E, Berke G (1997) Fluorescence depolarization as an early measure of T lymphocyte stimulation. J Immunol Methods 201:15–24

    Article  PubMed  CAS  Google Scholar 

  19. Zurgil N, Shafran Y, Fixler D, Deutsch M (2002) Analysis of early events in individual cells by fluorescence intensity and polarization measurements. Biochem Biophys Res Commun 290:1573–1582

    Article  PubMed  CAS  Google Scholar 

  20. Zurgil N, Sunray M, Shafran Y, Afrimzon E, Deutsch M (2003) A novel approach for on line monitoring of apoptotic cell shrinkage in individual live lymphocytes. J Immunol Methods 281:37–49

    Article  PubMed  CAS  Google Scholar 

  21. Watson JV, Dive C (1994) Enzyme kinetics. Methods Cell Biol 41:469–507

    Article  PubMed  CAS  Google Scholar 

  22. Gelskey S, Brecx M, Netuschil L, McDonald L, Brownstone E, Stoddart M (1993) Vital fluorescence: a new measure of periodontal treatment effect. J Can Dent Assoc 59:615–618

    PubMed  CAS  Google Scholar 

  23. Afrimzon E, Zurgil N, Shafran Y et al (2004) Monitoring of intracellular enzyme kinetic characteristics of peripheral mononuclear cells in breast cancer patients. Cancer Epidemiol Biomarkers Prev 13:235–241

    Article  PubMed  CAS  Google Scholar 

  24. Deutsch M, Deutsch A, Shirihai O et al (2006) A novel miniature cell retainer for correlative high-content analysis of individual untethered non-adherent cells. Lab Chip 8:995–1000

    Article  CAS  Google Scholar 

  25. Sunray M, Zurgil N, Shafran Y, Deutsch M (2002) Determination of individual cell Michaelis-Menten constants. Cytometry 47:8–16

    Article  PubMed  CAS  Google Scholar 

  26. Deutsch M, Zurgil N, Kaufman M, Berke G (2000) Fluorescence polarization as an early measure of T-lymphocyte stimulation. In: Kearse KP (ed) Methods in molecular biology, vol. 134, T cell protocols: Development and activation. Humana Press, Totowa NJ, pp 221–242

  27. Turner RR, Ollila DW, Krasne DL, Giuliano AL (1997) Histopathologic validation of the sentinel lymph node hypothesis for breast carcinoma. Ann Surg 226:271–276

    Article  PubMed  CAS  Google Scholar 

  28. Dowlatshahi K, Fan M, Anderson JM et al (2001) Occult metastases in sentinel nodes of 200 patients with operable breast cancer. Ann Surg Oncol 8:675–681

    Article  PubMed  CAS  Google Scholar 

  29. Weigelt B, Verduijn P, Bosma AJ et al (2004) Detection of metastases in sentinel lymph nodes of breast cancer patients by multiple mRNA markers. Br J Cancer 90:1531–1537

    Article  PubMed  CAS  Google Scholar 

  30. Novaes M, Bendit I, Garicochea B et al (1997) Reverse transcriptase-polymerase chain reaction analysis of cytokeratin 19 expression in the peripheral blood mononuclear cells of normal female blood donors. Mol Pathol 50:209–211

    Article  PubMed  CAS  Google Scholar 

  31. Ahmad M, Rees RC, Ali SA (2004) Escape from immunotherapy: possible mechanisms that influence tumor regression/progression. Cancer Immunol Immunother 53:844–854

    Article  PubMed  Google Scholar 

  32. Schwartz RH (1990) A cell culture model for T lymphocyte clonal anergy. Science 248:1349–1356

    Article  PubMed  CAS  Google Scholar 

  33. Effros RB (2004) Replicative senescence of CD8 T cells: potential effects on cancer immune surveillance and immunotherapy. Cancer Immunol Immunother 53:925–933

    Article  PubMed  Google Scholar 

  34. Algarro I, Garcia-Lora A, Cabrera T, Ruiz-Cabello F, Garrido F (2004) The selection of tumor variants with altered expression of classical and nonclassical MHC class 1 molecules: implications for tumor immune escape. Cancer Immunol Immunother 53:904–910

    Google Scholar 

  35. Monroe JG, Cambier JC (1983) B cell activation. Receptor cross-linking by thymus-independent and thymus-dependent antigens induces a rapid decrease in the plasma membrane potential of antigen-binding B lymphocytes. J Immunol 131:2641–2644

    PubMed  CAS  Google Scholar 

  36. Schreiner GF, Unanue ER (1976) Membrane and cytoplasmic changes in B lymphocytes induced by ligand surface Ig interaction. Adv Immunol 24:37–65

    PubMed  CAS  Google Scholar 

  37. Becker EL, Unanue ER (1976) The requirement for esterase activation in the anti-immunoglobulin-triggered movement of B lymphocytes. J Immunol 117:27–32

    PubMed  CAS  Google Scholar 

  38. Wong PY, Staren ED, Tereshkova N, Braun DP (1998) Functional analysis of tumor-infiltrating leukocytes in breast cancer patients. J Surg Res 76:95–103

    Article  PubMed  CAS  Google Scholar 

  39. Reome JB, Hylind JC, Dutton RW, Dobrzanski MJ (2004) Type 1 and type 2 tumor infiltrating effector cell populations in progressive breast cancer. Clin Immunol 111:69–81

    Article  PubMed  CAS  Google Scholar 

  40. Alam SM, Clark JS, George WD, Campbell AM (1993) Alter lymphocyte populations in tumour invaded nodes of breast cancer patients. Immunol Lett 35:229–234

    Article  PubMed  CAS  Google Scholar 

  41. Battaglia A, Ferrandina G, Buzzonetti A et al (2003) Lymphocyte populations in human lymph nodes. Alterations in CD4+CD25+ T regulatory cell phenotype and T-cell receptor Vβ repertoire. Immunology 110:304–312

    Article  PubMed  CAS  Google Scholar 

  42. Georgiannos SN, Renaut A, Goode AW, Sheaff M (2003) The immunophenotype and activation status of the lymphocytic infiltrate in human breast cancers, the role of the major histocompatibility complex in cell-mediated immune mechanisms, and their association with prognostic indicators. Surgery 134:824–834

    Article  Google Scholar 

  43. Kass R, Bellone S, Palmieri M et al (2003) Restoration of tumor-specific HLA class I restricted cytotoxicity in tumor infiltrating lymphocytes of advanced breast cancer patients by in vitro stimulation with tumor antigen-pulsed autologous dendritic cells. Breast Cancer Res Treat 80:275–285

    Article  PubMed  Google Scholar 

  44. Satthaporn S, Robins A, Vassanasiri W et al (2004) Dendritic cells are dysfunctional in patients with operable breast cancer. Cancer Immunol Immunother 53:510–518

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the US Army Medical Research and Materiel Command Grant DAMD17-01-1-0131 and by The Horowitz Foundation. We would like to express our gratitude to Sergey Moshkov for his valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mordechai Deutsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afrimzon, E., Deutsch, A., Shafran, Y. et al. Intracellular esterase activity in living cells may distinguish between metastatic and tumor-free lymph nodes. Clin Exp Metastasis 25, 213–224 (2008). https://doi.org/10.1007/s10585-007-9135-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-007-9135-1

Keywords

Navigation