Skip to main content

Advertisement

Log in

Escape from immunotherapy: possible mechanisms that influence tumor regression/progression

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Tumor escape is one major obstacle that has to be addressed prior to designing and delivering successful immunotherapy. There is compelling evidence to support the notion that immunogenic tumors, in murine models and cancer patients, can be rejected by the immune system under optimum conditions for activating adaptive and nonadaptive antitumor immune responses. Despite this capability, a large number of tumors continue to grow and evade recognition and/or destruction by the immune system. The limited success in current immunotherapeutic strategies may be due to a variety of reasons: failure of effector cells to compete with the growing tumor burden, production of humoral factors by tumors that locally block cytotoxicity, antigen/MHC loss, T-cell dysfunction, production of suppressor T cells—to name but a few causes for therapeutic ineffectiveness for the particular malignancy being treated. To optimize immunotherapy strategies, correction of immune-activating signals, eradication of inhibitory factors, and the evasion from newly developed immunoresistant tumor phenotypes need to be simultaneously considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jakobisiak M, Lasek W, Golab J (2003) Natural mechanisms protecting against cancer. Immunol Lett 90(2–3):103–22

    Google Scholar 

  2. Speiser DE, Rimoldi D, Batard P, Lienard D, Lejeune F, Cerottini JC, Romero P (2003) Disease-driven T cell activation predicts immune responses to vaccination against melanoma. Cancer Immunol 3:12

    Google Scholar 

  3. Romero P (2003) IL-31 Monitoring natural and vaccine induced T cell responses in melanoma. Pigment Cell Res 16(5):588

    Article  Google Scholar 

  4. Jager E, Jager D, Knuth A (2000) CTL-defined cancer vaccines in melanoma and other epithelial cancer. In: Stern PL, Beverely PCL, Carroll MW (eds) Cancer vaccines and immunotherapy. Cambridge University Press, Cambridge, pp 207

  5. Kaufmann HL, Schlorn J (2000) Vaccines in colon cancer. In: Stern PL, Beverely PCL, Carroll MW (eds) Cancer Vaccines and Immunotherapy. Cambridge University Press, Cambridge, p 107

  6. Rudolf MP, Small LA, Velders MP, DaSilva DM, Weijzens S, Kast MW (2000) Vaccine delivery and immunosuppression in cervical cancer. In: Stern PL, Beverely PCL, Carroll MW (eds) Cancer vaccines and immunotherapy. Cambridge University Press, Cambridge, p 82

  7. Taylor Papadimitriou J, Burchell J, Miles DW (2000) MUC1 vaccines and breast cancer. In: Cancer vaccines and immunotherapy. Stern PL, Beverely PCL, Carroll MW (eds) Cambridge University Press, Cambridge, p 135

  8. Stevenson FK, Zhu D, Spellerberg, M, King CA, Sahota SS, Rice J, Thompsett AR, Hamblin TJ (2000) DNA vaccines against B-cell tumors. In: Stern PL, Beverely PCL, Carroll MW (eds) Cancer vaccines and immunotherapy. Cambridge University Press, Cambridge, p 218

  9. Adams M, Jasani B, Colaco CS, Mason MD (2000) Dendritic cell approaches to immunotherapy. In: Stern PL, Beverely PCL, Carroll MW (eds) Cancer vaccines and immunotherapy. Cambridge University Press, Cambridge, p 237

  10. Ciavarra RP, Brown RR, Holterman DA, Garrett M, Glass WF 2nd, Wright GL Jr, Schellhammer PF, Somers KD (2003) Impact of the tumor microenvironment on host infiltrating cells and the efficacy of flt3-ligand combination immunotherapy evaluated in a treatment model of mouse prostate cancer. Cancer Immunol Immunother 52(9):535–545

    Article  CAS  PubMed  Google Scholar 

  11. Cabrera T, Lopez-Nevot MA, Gaforio JJ, Ruiz-Cabello F, Garrido F (2003) Analysis of HLA expression in human tumor tissues. Cancer Immunol Immunother. 52:1–9

    Google Scholar 

  12. Clark RE, Dodi IA, Hill SC, Lill JR, Aubert G, Macintyre AR, Rojas J, Bourdon A, Bonner PL, Wang L, Christmas SE, Travers PJ, Creaser CS, Rees RC, Madrigal JA (2001) Direct evidence that leukemic cells present HLA-associated immunogenic peptides derived from the BCR-ABL b3a2 fusion protein. Blood 98(10):2887–2893

    Article  CAS  PubMed  Google Scholar 

  13. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998

    Article  CAS  PubMed  Google Scholar 

  14. Pardoll D (2001) T cells and tumors. Nature 411(12):1010–1012

    Article  CAS  Google Scholar 

  15. Khong HT, Restifo NP (2002) Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 3(11):999–1005

    Article  CAS  PubMed  Google Scholar 

  16. Muller L, Kiessling R, Rees RC, Pawelec G (2002) Escape mechanisms in tumor immunity: an update. J Environ Pathol Toxicol Oncol 21(4):277–330

    PubMed  Google Scholar 

  17. Rivoltini L, Carrabba M, Huber V, Castelli C, Novellino L, Dalerba P, Mortarini R, Arancia G, Anichini A, Fais S, Parmiani G (2002) Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction. Immunol Rev 188:97–113

    Article  PubMed  Google Scholar 

  18. Pardoll DM (1998) Cancer vaccines. Nat Med 5[Suppl 4]:525–531

    Google Scholar 

  19. Melcher A, Todryk S, Hardwick N, Ford M, Jacobson M, Vile RG (1998) Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat Med (5):581–587

    Google Scholar 

  20. Ali SA, McLean CS, Boursnell ME, Martin G, Holmes CL, Reeder S, Entwisle C, Blakeley DM, Shields JG, Todryk S, Vile R, Robins RA, Rees RC (2000) Preclinical evaluation of “whole” cell vaccines for prophylaxis and therapy using a disabled infectious single cycle-herpes simplex virus vector to transduce cytokine genes. Cancer Res 60(6):1663–1670

    CAS  PubMed  Google Scholar 

  21. Kovacsovics-Bankowski M, Rock KL (1995) A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 267(5195):243–246

    CAS  PubMed  Google Scholar 

  22. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045

    CAS  PubMed  Google Scholar 

  23. Algarra I, Collado A, Garrido F (1997) Altered MHC class I antigens in tumors. Int J Clin Lab Res 27(2):95–102

    CAS  PubMed  Google Scholar 

  24. Johnsen AK, France J, Nagy N, Askew D, Abdul-Karim FW, Gerson SL, Sy MS, Harding CV (2001) Systemic deficits in transporter for antigen presentation (TAP)-1 or proteasome subunit LMP2 have little or no effect on tumor incidence. Int J Cancer 91(3):366–372

    Article  CAS  PubMed  Google Scholar 

  25. Restifo NP (1996) The new vaccines: building viruses that elicit antitumor immunity. Curr Opin Immunol 8(5):658–663

    Article  CAS  PubMed  Google Scholar 

  26. Zheng P, Sarma S, Guo Y, Liu Y (1999) Two mechanisms for tumor evasion of preexisting cytotoxic T-cell responses: lessons from recurrent tumors. Cancer Res 59(14):3461–3467

    CAS  PubMed  Google Scholar 

  27. de Vries TJ, Fourkour A, Wobbes T, Verkroost G, Ruiter DJ, van Muijen GN (1997) Heterogeneous expression of immunotherapy candidate proteins gp100, MART-1, and tyrosinase in human melanoma cell lines and in human melanocytic lesions. Cancer Res 57(15):3223–3229

    PubMed  Google Scholar 

  28. Hofbauer GF, Kamarashev J, Geertsen R, Boni R, Dummer R (1998) Melan A/MART-1 immunoreactivity in formalin-fixed paraffin-embedded primary and metastatic melanoma: frequency and distribution. Melanoma Res 8(4):337–343

    CAS  PubMed  Google Scholar 

  29. Davidson WF, Giese T, Fredrickson TN (1998) Spontaneous development of plasmacytoid tumors in mice with defective Fas-Fas ligand interactions. Exp Med 187(11):1825–38

    CAS  PubMed  Google Scholar 

  30. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388(6638):190–195

    CAS  Google Scholar 

  31. Medema JP, de Jong J, van Hall T, Melief CJ, Offringa R (1999) Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein. J Exp Med 190(7):1033–1038

    Article  CAS  PubMed  Google Scholar 

  32. Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Yamaguchi N, Yagita H, Okumura K (2001) Involvement of tumor necrosis factor-related apoptosis-inducing ligand in NK cell-mediated and IFN-gamma-dependent suppression of subcutaneous tumor growth. Cell Immunol 214(2):194–200

    Article  CAS  PubMed  Google Scholar 

  33. Taylor MW, Feng GS (1991) Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 5(11):2516–2522

    CAS  PubMed  Google Scholar 

  34. Schwartz RH (1990) A cell culture model for T lymphocyte clonal anergy. Science 248(4961):1349–1356

    CAS  PubMed  Google Scholar 

  35. Oyama T, Ran S, Ishida T, Nadaf S, Kerr L, Carbone DP, Gabrilovich DI (1998) VEGF affects DC maturation through the inhibition of NF-kB activation in haemopoietic cells. J Immunol 160(3):1224–1232

    CAS  PubMed  Google Scholar 

  36. Bronte V, Apolloni E, Cabrelle A, Ronca R, Serafini P, Zamboni P, Restifo NP, Zanovello P (2000) Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells Blood 96(12):3838–3846

    Google Scholar 

  37. Gabrilovich DI, Velders MP, Sotomayor EM, Kast WM (2001) Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol 166(9):5398–406

    CAS  PubMed  Google Scholar 

  38. Kusmartsev SA, Li Y, Chen SH (2000) Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol 165(2):779–785

    CAS  PubMed  Google Scholar 

  39. McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins M, Byrne MC (2002) CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16(2):311–323

    CAS  PubMed  Google Scholar 

  40. Sutmuller RP, van Duivenvoorde LM, van Elsas A, Schumacher TN, Wildenberg ME, Allison JP, Toes RE, Offringa R, Melief CJ (2001) Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 194(6):823–832

    CAS  PubMed  Google Scholar 

  41. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB (2002) Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med 196(4):459–468

    Article  CAS  PubMed  Google Scholar 

  42. Mellor AL, Munn DH (1999) Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol Today 20(10):469–473

    Article  CAS  PubMed  Google Scholar 

  43. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, Van Den Eynde BJ (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9(10):1269–1274

    Article  CAS  PubMed  Google Scholar 

  44. Swanson KA, Zheng Y, Heidler KM, Mizobuchi T, Wilkes DS (2004) CD11c+ cells modulate pulmonary immune responses by production of indoleamine 2,3-dioxygenase. Am J Respir Cell Mol Biol 30(3):311–318

    Article  CAS  PubMed  Google Scholar 

  45. Ahmad M, Rees RC, McArdle SEB, Li G, Mian S, Entwisle C, Loudon P, Ali SA (2003) Regulation of CTL responses to a MHC- restricted class I peptide of the gp70 tumor antigen by splenic parenchymal CD4+ T cells in mice failing immunotherapy with DISC-mGM-CSF (Submitted)

  46. Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Kayagaki N, Yagita H, Okumura K (2002) Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 195(2):161–169

    Article  CAS  PubMed  Google Scholar 

  47. Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB, Marshall B, Chandler P, Antonia SJ, Burgess R, Slingluff CL Jr, Mellor AL (2002) Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297(5588):1867–1870

    Article  CAS  PubMed  Google Scholar 

  48. Koopman LA, Corver WE, van der Slik AR, Giphart MJ, Fleuren GJ (2000) Multiple genetic alterations cause frequent and heterogeneous human histocompatibility leukocyte antigen class I loss in cervical cancer. J Exp Med 191:961–975

    CAS  PubMed  Google Scholar 

  49. Hicklin DJ, Francesco M, Marincola FM, Ferrone S (1999) HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today 5:178– 186

    CAS  PubMed  Google Scholar 

  50. Garrido F, Algarra I (2001) MHC antigens and tumor escape from immune surveillance. Adv Cancer Res 83:117–158

    CAS  PubMed  Google Scholar 

  51. Keating PJ, Cromme FV, Duggan-Keen M, Snijders PJ, Walboomers JM, Hunter RD, Dyer PA, Stern PL (1995) Frequency of downregulation of individual HLA-A and –B alleles in cervical carcinomas in relation to TAP-1 expression. Br J Cancer 72(2):405–411

    CAS  PubMed  Google Scholar 

  52. Perez B, Benitez R, Fernandez MA, Oliva MR, Soto JL, Serrano S, Lopez Nevot MA, Garrido F (1999) A new beta 2 microglobulin mutation found in a melanoma tumor cell line. Tissue Antigens 53(6):569–572

    CAS  PubMed  Google Scholar 

  53. Serrano A, Tanzarella S, Lionello I, Mendez R, Traversari C, Ruiz-Cabello F, Garrido F (2001) Rexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2’-deoxycytidine treatment. Int J Cancer 94(2):243–251

    Article  CAS  PubMed  Google Scholar 

  54. Feenstra M, Verdaasdonk M, van der Zwan AW, de Weger R, Slootweg P, Tilanus M (2000) Microsatellite analysis of microdissected tumor cells and 6p high density microsatellite analysis in head and neck squamous cell carcinomas with down-regulated human leukocyte antigen class I expression. Lab Invest 80(3):405–414

    CAS  PubMed  Google Scholar 

  55. Ramal LM, Feenstra M, van der Zwan AW, Collado A, Lopez-Nevot MA, Tilanus M, Garrido F (2000) Criteria to define HLA haplotype loss in human solid tumors. Tissue Antigens 55(5):443–448

    CAS  PubMed  Google Scholar 

  56. Ramal LM, Maleno I, Cabrera T, Collado A, Ferron A, Lopez-Nevot MA, Garrido F (2000) Molecular strategies to define HLA haplotype loss in microdissected tumor cells. Hum Immunol 61(10):1001–1012

    CAS  PubMed  Google Scholar 

  57. Browning MJ, Krausa P, Rowan A, Hill AB, Bicknell DC, Bodmer JG, Bodmer WF (1993) Loss of human leukocyte antigen expression on colorectal tumor cell lines: implications for anti-tumor immunity and immunotherapy. J Immunother 14(3):163–168

    CAS  PubMed  Google Scholar 

  58. Griffioen M, Ouwerkerk IJ, Harten V, Schrier PI (2000) HLA-B locus-specific downregulation in human melanoma requires enhancer A as well as a sequence element located downstream of the transcription initiation site. Immunogenetics 52(1–2):121–128

    Google Scholar 

  59. Soong TW, Hui KM (1991) Regulation of the expression of major histocompatibility complex class I genes in human colorectal cancer. Cancer Detect Prev 15(3):231–239

    CAS  PubMed  Google Scholar 

  60. Ikeda H, Lethe B, Lehmann F, van Baren N, Baurain JF, de Smet C, Chambost H, Vitale M, Moretta A, Boon T, Coulie PG (1997) Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 6(2):199–208

    CAS  PubMed  Google Scholar 

  61. Real LM, Jimenez P, Kirkin A, Serrano A, Garcia A, Canton J, Zeuthen J, Garrido F, Ruiz-Cabello F (2001) Multiple mechanisms of immune evasion can coexist in melanoma tumor cell lines derived from the same patient. Cancer Immunol Immunother (11):621–628

    Article  Google Scholar 

  62. Cabrera T, Pedrajas G, Cozar JM, Garrido A, Vincente J, Tallada M, Garrido F (2003) HLA class I expression in bladder carcinomas. Tissue Antigens 62(4):324–327

    Article  CAS  PubMed  Google Scholar 

  63. Cabrera T, Maleno I, Lopez-Nevot MA, Redondo M, Fernandez MA, Collado A, Garrido F (2003) High frequency of HLA- B44 allelic loss in human solid tumors. Hum Immunol 64(10):941–950

    Article  CAS  PubMed  Google Scholar 

  64. Cabrera CM, Jimenez P, Cabrera T, Esparza C, Ruiz-Cabello F, Garrido F (2003) Total loss of MHC class I in colorectal tumors can be explained by two molecular pathways: beta 2-microglobulin inactivation and MSI-positive tumors and LMP7/TAP2 downregulation in MS negative tumors. Tissue Antigens 61(3):211–219

    CAS  PubMed  Google Scholar 

  65. Ali SA, Lynam J, McLean CS, Entwisle C, Loudon P, Rojas JM, McArdle SE, Li G, Mian S, Rees RC (2002) Tumor regression induced by intratumor therapy with a disabled infectious single cycle (DISC) herpes simplex virus (HSV) vector, DISC/HSV/murine granulocyte-macrophage colony-stimulating factor, correlates with antigen-specific adaptive immunity. J Immunol 168(7):3512–3519

    CAS  PubMed  Google Scholar 

  66. Boursnell MEG, Entwistle C, Ali SA, Sivasubramaniam SD, Reeder SP, McLean CS, Blakeley DM, Miller J, Hill S, Shields, JG, Inglis SC, Rees RC (1998) Disabled infectious single cycle (DISC) herpes simplex virus as a vector for immunotherapy of cancer. Adv Exp Med Biol 451:379–384

    CAS  PubMed  Google Scholar 

  67. Rees RC, McArdle S, Mian S, Li G, Ahmad M, Parkinson R, Ali SA (2002) Disabled Infectious single cycle-herpes simplex virus (DISC-HSV) as a vector for immunogene therapy of cancer. Curr Opin Mol Ther 4:49–53

    PubMed  Google Scholar 

  68. Todryk S, Ali SA, Dalgleish A, Rees RC (2001) Genetically modified tumor cells for cancer immunisation. In: Robins RA, Rees RC (eds) Cancer immunology. Kluwer, The Netherlands, pp 181–194

  69. Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenberg SA (1996) Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst 88(2):100–108

    CAS  PubMed  Google Scholar 

  70. Ugurel S, Uhlig D, Pfohler C, Tilgen W, Schadendorf D, Reinhold U (2004) Down-regulation of HLA class II and co-stimulatory CD86/B7.2 on circulating monocytes from melanoma patients. Cancer Immunol Immunother 53(6):551–559

    Article  CAS  PubMed  Google Scholar 

  71. Le YS, Kim TE, Kim BK, Park YG, Kim GM, Jee SB, Ryu KS, Kim IK, Kim JW (2002) Alterations of HLA class I and class II antigen expression in borderline invasive and metastatic ovarian cancers. Exp Mol Med 34(1):18–26

    PubMed  Google Scholar 

  72. Maiorana A, Cesinaro AM, Fano RA, Collina G (1995) Expression of MHC class I and class II antigens in primary breast carcinomas and synchronous nodal metastases. Clin Exp Metastasis 13(1):43–48

    CAS  PubMed  Google Scholar 

  73. Sharpe JC, Abel PD, Gilbertson JA, Brawn P, Foster CS (1994) Modulated expression of human leucocyte antigen class I and class II determinants in hyperplastic and malignant human prostatic epithelium. Br J Urol 74(5):609–616

    CAS  PubMed  Google Scholar 

  74. Uyttenhove C, Godfraind C, Lethe B, Amar-Costesec A, Renauld JC, Gajewski TF, Duffour MT, Warnier G, Boon T, Van den Eynde BJ (1997) The expression of mouse gene P1A in testis does not prevent safe induction of cytolytic T cells against a P1A-encoded tumor antigen. Int J Cancer 70(3):349–356

    Article  CAS  PubMed  Google Scholar 

  75. Ciurea A, Hunziker L, Martinic MM, Oxenius A, Hengartner H, Zinkernagel RM (2001) CD4+ T-cell-epitope escape mutant virus selected in vivo. Nat Med 7:795–800

    Article  CAS  PubMed  Google Scholar 

  76. Rohrlich PS, Cardinaud S, Firat H, Lamari M, Briand P, Escriou N, Lemonnier FA (2003) HLA-B*0702 transgenic, H-2KbDb double-knockout mice: phenotypical and functional characterization in response to influenza virus. Int Immunol 15:765–772

    Article  CAS  PubMed  Google Scholar 

  77. Bai XF, Liu J, Li O, Zheng P, Liu Y (2003) Antigenic drift as a mechanism for tumor evasion of destruction by cytolytic T lymphocytes. J Clin Invest 111(10):1487–1496

    Article  CAS  PubMed  Google Scholar 

  78. Lozupone F, Rivoltini L, Luciani F, Venditti M, Lugini L, Cova A, Squarcina P, Parmiani G, Belardelli F, Fais S (2003) Adoptive transfer of an anti-MART-1(27–35)-specific CD8+ T cell clone leads to immunoselection of human melanoma antigen-loss variants in SCID mice. Eur J Immunol 33(2):556–566

    Article  CAS  PubMed  Google Scholar 

  79. Maeurer MJ, Gollin SM, Martin D, Swaney W, Bryant J, Castelli C, Robbins P, Parmiani G, Storkus WJ, Lotze MT (1996) Tumor escape from immune recognition: lethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. J Clin Invest 98(7):1633–1641

    CAS  PubMed  Google Scholar 

  80. Chen YL, Chen SH, Wang JY, Yang BC (2003) Fas ligand on tumor cells mediates inactivation of neutrophils. J Immunol 171(3):1183–1191

    CAS  PubMed  Google Scholar 

  81. Ragnarsson GB, Mikaelsdottir EK, Vidarsson H, Jonasson JG, Olafsdottir K, Kristjansdottir K, Kjartansson J, Ogmundsdottir HM, Rafnar T (2000) Intracellular Fas ligand in normal and malignant breast epithelium does not induce apoptosis in Fas-sensitive cells. Br J Cancer 83(12):1715–1721

    Article  CAS  PubMed  Google Scholar 

  82. Osaki M, Kase S, Adachi K, Takeda A, Hashimoto K, Ito H (2004) Inhibition of the PI3 K-Akt signaling pathway enhances the sensitivity of Fas-mediated apoptosis in human gastric carcinoma cell line, MKN-45. J Cancer Res Clin Oncol 130(1):8–14

    Article  CAS  PubMed  Google Scholar 

  83. Fennell DA (2003) Bcl-2 as a target for overcoming chemoresistance in small-cell lung cancer. Clin Lung Cancer 4(5):307–313

    CAS  PubMed  Google Scholar 

  84. Salvesen GS, Dixit VM (1999) Caspase activation: the induced-proximity model. Proc Natl Acad Sci U S A 96(20):10964–10967

    Article  CAS  PubMed  Google Scholar 

  85. Groneberg C, Pickartz T, Binder A, Ringel F, Srock S, Sieber T, Schoeler D, Schriever F (2003) Clinical relevance of CD95 (Fas/Apo-1) on T cells of patients with B-cell chronic lymphocytic leukemia. Exp Hematol 31(8):682–685

    Article  CAS  PubMed  Google Scholar 

  86. Hersey P, Zhang XD (2001) How melanoma cells evade trail-induced apoptosis. Nat Rev Cancer 1(2):142–150

    Article  CAS  PubMed  Google Scholar 

  87. Kase H, Aoki Y, Tanaka K (2003) Fas ligand expression in cervical adenocarcinoma: relevance to lymph node metastasis and tumor progression. Gynecol Oncol 90(1):70–74

    Article  CAS  PubMed  Google Scholar 

  88. Song E, Chen J, Ouyang N, Su F, Wang M, Heemann U (2001) Soluble Fas ligand released by colon adenocarcinoma cells induces host lymphocyte apoptosis: an active mode of immune evasion in colon cancer. Br J Cancer 85(7):1047–1054

    Article  CAS  PubMed  Google Scholar 

  89. Li R, Ruttinger D, Li R, Si LS, Wang YL (2003) Analysis of the immunological microenvironment at the tumor site in patients with non-small cell lung cancer. Langenbecks Arch Surg 388(6):406–412

    Article  PubMed  Google Scholar 

  90. Toi M, Taniguchi T, Yamamoto Y, Kurisaki T, Suzuki H, Tominaga T (1996) Clinical significance of the determination of angiogenic factors. Eur J Cancer 32A(14):2513–2529

    CAS  PubMed  Google Scholar 

  91. Ohm JE, Carbone DP (2001) VEGF as a mediator of tumor associated immunodeficiency. Immunol Res 23(2–3):263–272

    Google Scholar 

  92. Lissoni P, Malugani F, Bonfanti A, Bucovec R, Secondino S, Brivio F, Ferrari–Bravo A, Ferrante R, Vigore L, Rovelli F, Mandala M, Vivian Fumagalli L, Gardani GS (2001) Abnormally enhanced blood concentrations of VEGF in metastatic cancer patients and their relation to circulating dendritic cells, IL-12 and endothelin-1. J Biol Regul Homeost Agents 15(2):140–144

    Google Scholar 

  93. Inoshima N, Nakanishi Y, Minami T, Izumi M, Takayama K, Yoshin Hara N (2002) The influence of dendritic cell infilteration and VEGF expression on the prognosis of NSCLC. Clin Cancer Res 8(11):3480–3486

    CAS  Google Scholar 

  94. Fan XH, Han BH, Dong QG, Sha HF, Bao GL, Liao ML (2003) Vascular endothelial growth factor inhibits dendritic cells from patients with NSCLC. Zhonghua Jie He He Xi Za Zhi (9):539 – 543

    Google Scholar 

  95. Buggins AG, Milojkovic D, Arno MJ, Lea NC, Mufti GJ, Thomas NS, Hirst WJ (2001) Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF-kappaB, c-Myc, and pRb pathways. J Immunol 167(10):6021–6030

    CAS  PubMed  Google Scholar 

  96. Fortis C, Foppoli M, Gianotti L, Galli L, Citterio G, Consogno G, Gentilini O, Braga M (1996) Increased interleukin-10 serum levels in patients with solid tumors. Cancer Lett 104(1):1–5

    Article  CAS  PubMed  Google Scholar 

  97. Bellone G, Turletti A, Artusio E, Mareschi K, Carbone A, Tibaudi D, Robecchi A, Emanuelli G, Rodeck U (1999) Tumor-associated transforming growth factor-beta and interleukin-10 contribute to a systemic Th2 immune phenotype in pancreatic carcinoma patients. Am J Pathol 155(2):537–547

    CAS  PubMed  Google Scholar 

  98. Mukherjee P, Ginardi AR, Madsen CS, Tinder TL, Jacobs F, Parker J, Agrawal B, Longenecker BM, Gendler SJ (2001) MUC1-specific CTLs are non-functional within a pancreatic tumor microenvironment. Glycoconj J 18(11–12):931–942

    Google Scholar 

  99. De Smedt T, Van Mechelen M, De Becker G, Urbain J, Leo O, Moser M (1997) Effect of interleukin-10 on dendritic cell maturation and function. Eur J Immunol 27(5):1229–1235

    PubMed  Google Scholar 

  100. Sharma S, Stolina M, Lin Y, Gardner B, Miller PW, Kronenberg M, Dubinett SM (1999) T cell-derived IL-10 promotes lung cancer growth by suppressing both T cell and APC function. J Immunol 163(9):5020–5028

    CAS  PubMed  Google Scholar 

  101. Tsushima H, Kawata S, Tamura S, Ito N, Shirai Y, Kiso S, Imai Y, Shimomukai H, Nomura Y, Matsuda Y, Matsuzawa Y (1996) High levels of transforming growth factor beta 1 in patients with colorectal cancer: association with disease progression. Gastroenterology 110(2):375–382

    CAS  PubMed  Google Scholar 

  102. Gorsch SM, Memoli VA, Stukel TA, Gold LI, Arrick BA (1992) Immunohistochemical staining for transforming growth factor beta 1 associates with disease progression in human breast cancer. Cancer Res 52(24):6949–6952

    CAS  PubMed  Google Scholar 

  103. Doran T, Stuhlmiller H, Kim JA, Martin EW Jr, Triozzi PL (1997) Oncogene and cytokine expression of human colorectal tumors responding to immunotherapy. J Immunother 20(5):372–376

    CAS  PubMed  Google Scholar 

  104. Krasagakis K, Tholke D, Farthmann B, Eberle J, Mansmann U, Orfanos CE (1998) Elevated plasma levels of transforming growth factor (TGF)-beta1 and TGF-beta2 in patients with disseminated malignant melanoma. Br J Cancer 77(9):1492–1494

    CAS  PubMed  Google Scholar 

  105. Maeda H, Shiraishi A (1996) TGF-beta contributes to the shift toward Th2-type responses through direct and IL-10-mediated pathways in tumor-bearing mice. J Immunol 156(1):73–78

    CAS  PubMed  Google Scholar 

  106. von Bernstorff W, Voss M, Freichel S, Schmid A, Vogel I, Johnk C, Henne-Bruns D, Kremer B, Kalthoff H (2001) Systemic and local immunosuppression in pancreatic cancer patients. Clin Cancer Res 7[Suppl 3]:925s–932s

    PubMed  Google Scholar 

  107. Janeway CA, Travers P, Walport M, Shlomchik M (2002) Immunobiology: the immune system in health and disease, 5th edn. Garland, New York

  108. Nieland JD, Loviscek K, Kono K, Albain KS, McCall AR, Potkul RK, Fisher SG, Velders MP, Petersson M, Kiessling R, Kast WM (1998) PBLs of early breast carcinoma patients with a high nuclear grade tumor unlike PBLs of cervical carcinoma patients do not show a decreased TCR zeta expression but are functionally impaired. J Immunother 21(4):317–322

    CAS  PubMed  Google Scholar 

  109. Kono K, Salazar-Onfray F, Petersson M, Hansson J, Masucci G, Wasserman K, Nakazawa T, Anderson P, Kiessling R (1996) Hydrogen peroxide secreted by tumor-derived macrophages down-modulates signal-transducing zeta molecules and inhibits tumor-specific T cell-and natural killer cell-mediated cytotoxicity. Eur J Immunol 26(6):1308–1313

    CAS  PubMed  Google Scholar 

  110. Nakagomi H, Petersson M, Magnusson I, Juhlin C, Matsuda M, Mellstedt H, Taupin JL, Vivier E, Anderson P, Kiessling R (1993) Decreased expression of the signal-transducing zeta chains in tumor-infiltrating T-cells and NK cells of patients with colorectal carcinoma. Cancer Res 53(23):5610–5612

    CAS  PubMed  Google Scholar 

  111. Schule J, Bergkvist L, Hakansson L, Gustafsson B, Hakansson A (2002) Down-regulation of the CD3-zeta chain in sentinel node biopsies from breast cancer patients. Breast Cancer Res Treat 74(1):33–40

    Article  PubMed  Google Scholar 

  112. Gruss HJ, Dower SK (1995) Tumor necrosis factor ligand superfamily: involvement in the pathology of malignant lymphomas. Blood 85:3378–404

    CAS  PubMed  Google Scholar 

  113. Smith CA, Farrah T, Goodwin RG (1994) The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76:959–962

    CAS  PubMed  Google Scholar 

  114. Abken H, Hombach A, Heuser C, Kronfeld K, Seliger B (2002) Tuning tumor-specific T-cell activation: a matter of costimulation? Trends Immunol 23(5):240–245

    Article  CAS  PubMed  Google Scholar 

  115. Chen L, McGowan P, Ashe S, Johnston J, Li Y, Hellstrom I, Hellstrom KE (1994) Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity. J Exp Med 179(2):523–532

    CAS  PubMed  Google Scholar 

  116. Gaken J, Jiang J, Daniel K, van Berkel E, Hughes C, Kuiper M, Darling D, Tavassoli M, Galea-Lauri J, Ford K, Kemeny M, Russell S, Farzaneh F (2000) Fusagene vectors: a novel strategy for the expression of multiple genes from a single cistron. Gene Ther 7(23):1979–1985

    Article  CAS  PubMed  Google Scholar 

  117. Wen XY, Mandelbaum S, Li ZH, Hitt M, Graham FL, Hawley RG, Stewart AK (2001) Tricistronic viral vectors co-expressing interleukin 12 (IL-12) and CD80 (B7.1) for the immunotherapy of cancer: preclinical studies in myeloma. Cancer Gene Ther 8(5):361–370

    Article  CAS  PubMed  Google Scholar 

  118. Melero I, Shuford WW, Newby SA, Aruffo A, Ledbetter JA, Hellstrom KE, Mittler RS, Chen L (1997) Monoclonal antibodies against the 4–1BB T-cell activation molecule eradicate established tumors. Nat Med 3(6):682–685

    CAS  PubMed  Google Scholar 

  119. Wilcox RA, Flies DB, Zhu G, Johnson AJ, Tamada K, Chapoval AI, Strome SE, Pease LR, Chen L (2002) Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly immunogenic tumors. J Clin Invest 109(5):651–659

    Article  CAS  PubMed  Google Scholar 

  120. Weinberg AD, Rivera MM, Prell R, Morris A, Ramstad T, Vetto JT, Urba WJ, Alvord G, Bunce C, Shields J (2000) Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J Immunol 164(4):2160–2169

    CAS  PubMed  Google Scholar 

  121. Levey DL, Srivastava PK (1996) Alterations in T cells of cancer-bearers: whence specificity? Immunol Today 17:365–368

    Article  CAS  PubMed  Google Scholar 

  122. Plescia OJ, Grinwich K, Plescia AM (1976) Subversive activity of syngeneic tumor cells as an escape mechanism from immune surveillance and the role of prostaglandins. Ann N Y Acad Sci 276:455–465

    CAS  PubMed  Google Scholar 

  123. Dye ES, North RJ (1981) T cell-mediated immunosuppression as an obstacle to adoptive immunotherapy of the P815 mastocytoma and its metastases. J Exp Med 154(4):1033–1042

    CAS  PubMed  Google Scholar 

  124. Thornton AM, Shevach EM (2000) Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol 164:183–190

    CAS  PubMed  Google Scholar 

  125. Antony PA, Restifo NP (2002) Do CD4+ CD25+ immunoregulatory T cells hinder tumor immunotherapy? J Immunother 25(3):202–206

    Article  CAS  PubMed  Google Scholar 

  126. Javia LR, Rosenberg SA (2003) CD4+CD25+ suppressor lymphocytes in the circulation of patients immunized against melanoma antigens. J Immunother 26:85–93

    Article  CAS  PubMed  Google Scholar 

  127. Sasada T, Kimura M, Yoshida Y, Kanai M, Takabayashi A (2003) CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer 98:1089–1099

    Article  PubMed  Google Scholar 

  128. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, Rubin SC, Kaiser LR, June CH (2001) Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61(12):4766–4767

    CAS  PubMed  Google Scholar 

  129. Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM (2002) Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 168(2):689–695

    CAS  PubMed  Google Scholar 

  130. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166(1):678–89

    CAS  PubMed  Google Scholar 

  131. Otsuji M, Kimura Y, Aoe T, Okamoto Y, Saito T (1996) Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 zeta chain of T-cell receptor complex and antigen-specific T-cell responses. Proc Natl Acad Sci U S A 93(23):13119–13124

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selman A. Ali.

Additional information

This article forms part of the Symposium in Writing on “Tumor escape from the immune response,” published in vol. 53

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, M., Rees, R.C. & Ali, S.A. Escape from immunotherapy: possible mechanisms that influence tumor regression/progression. Cancer Immunol Immunother 53, 844–854 (2004). https://doi.org/10.1007/s00262-004-0540-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-004-0540-x

Keywords

Navigation