Skip to main content

Advertisement

Log in

Advances in optical imaging and novel model systems for cancer metastasis research

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Research into the genetic and physiological interactions of tumours with their host environment requires in vivo assays to address molecular expression patterns and function. In recent years much of this work has been performed using bioluminescent and fluorescent imaging techniques that allow real-time and non-invasive imaging of gene expression and (tumour) tissue development. Luminescence imaging has until now been more or less the only tool that allows the imaging of intra-osseous breast cancer cells and indeed this technique has been pioneered in our laboratory. Here we summarise some recent innovations and developments using cancer cells and some of the first imaging models of multimodal dual luminescence and luminescence combined with fluorescence of intra-osseous tumours. We further engineered our models to incorporate a specific insertion site in the genome and will discuss some of the possible applications. These include the insertion of signalling pathway-specific reporters and studying the fate of multiple injected populations in a single mouse. We conclude that recent improvements in luminescence- and fluorescence-detection platforms now clearly allow multimodal imaging which will greatly enhance our ability to assess gene function and for the first time to visualise multiple gene- and cellular interactions in real time and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580

    Article  PubMed  CAS  Google Scholar 

  2. Jain RK, Munn LL, Fukumura D (2002) Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer 2:266–276

    Article  PubMed  CAS  Google Scholar 

  3. Lyons SK (2005) Advances in imaging mouse tumour models in vivo. J Pathol 205:194–205

    Article  PubMed  CAS  Google Scholar 

  4. Sato A, Klaunberg B, Tolwani R (2004) In vivo bioluminescence imaging. Comp Med 54:631–634

    PubMed  CAS  Google Scholar 

  5. Becker A, Hessenius C, Licha K, Ebert B, Sukowski U, Semmler W, Wiedenmann B, Grotzinger C (2001) Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nat Biotechnol 19:327–331

    Article  PubMed  CAS  Google Scholar 

  6. Contag PR, Olomu IN, Stevenson DK, Contag CH (1998) Bioluminescent indicators in living mammals. Nat Med 4:245–247

    Article  PubMed  CAS  Google Scholar 

  7. Thompson JF, Hayes LS, Lloyd DB (1991) Modulation of firefly luciferase stability and impact on studies of gene regulation. Gene 103:171–177

    Google Scholar 

  8. Mansfield JR, Gossage KW, Hoyt CC, Levenson RM (2005) Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging. J Biomed Opt 10:41207

    Google Scholar 

  9. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  PubMed  CAS  Google Scholar 

  10. Chance B (1991) Optical method. Annu Rev Biophys Biophys Chem 20:1–28

    Article  PubMed  CAS  Google Scholar 

  11. Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV (2003) Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2:50–64

    Article  PubMed  CAS  Google Scholar 

  12. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634

    Article  PubMed  CAS  Google Scholar 

  13. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  PubMed  CAS  Google Scholar 

  14. Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235–260

    Article  PubMed  CAS  Google Scholar 

  15. Wetterwald A, van der Pluijm G, Que I, Sijmons B, Buijs J, Karperien M, Lowik CW, Gautschi E, Thalmann GN, Cecchini MG (2002) Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease. Am J Pathol 160:1143–1153

    PubMed  Google Scholar 

  16. Yang M, Baranov E, Jiang P, Sun FX, Li XM, Li L, Hasegawa S, Bouvet M, Al-Tuwaijri M, Chishima T, Shimada H, Moossa AR, Penman S, Hoffman RM (2000) Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci USA 97:1206–1211

    Article  PubMed  CAS  Google Scholar 

  17. Thorne SH, Negrin RS, Contag CH (2006) Synergistic antitumor effects of immune cell-viral biotherapy. Science 311:1780–1784

    Article  PubMed  CAS  Google Scholar 

  18. Zhang N, Fang Z, Contag PR, Purchio AF, West DB (2004) Tracking angiogenesis induced by skin wounding and contact hypersensitivity using a Vegfr2-luciferase transgenic mouse. Blood 103:617–626

    Article  PubMed  CAS  Google Scholar 

  19. Ntziachristos V, Bremer C, Graves EE, Ripoll J, Weissleder R (2002) In vivo tomographic imaging of near-infrared fluorescent probes. Mol Imaging 1:82–88

    Article  PubMed  Google Scholar 

  20. Montet X, Ntziachristos V, Grimm J, Weissleder R (2005) Tomographic fluorescence mapping of tumor targets. Cancer Res 65:6330–6336

    Article  PubMed  CAS  Google Scholar 

  21. Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6:669–676

    Article  PubMed  CAS  Google Scholar 

  22. Arguello F, Baggs RB, Frantz CN (1988) A murine model of experimental metastasis to bone and bone marrow. Cancer Res 48:6876–6881

    PubMed  CAS  Google Scholar 

  23. Rosol TJ, Tannehill-Gregg SH, Corn S, Schneider A, McCauley LK (2004) Animal models of bone metastasis. Cancer Treat Res 118:47–81

    PubMed  Google Scholar 

  24. van der Pluijm G, Que I, Sijmons B, Buijs JT, Lowik CW, Wetterwald A, Thalmann GN, Papapoulos SE, Cecchini MG (2005) Interference with the microenvironmental support impairs the de novo formation of bone metastases in vivo. Cancer Res 65:7682–7690

    PubMed  Google Scholar 

  25. Buijs JT, Rentsch CA, van der Horst G, van Overveld PG, Wetterwald A, Schwaninger R, Henriquez NV, ten Dijke P, Borovecki F, Markwalder R, Thalmann GN, Papapoulos SE, Pelger RC, Vukicevic S, Cecchini MG, Lowik CW, van der Pluijm G (2007) BMP7, a putative regulator of epithelial homeostasis in the human prostate, is a potent inhibitor of prostate cancer bone metastasis in vivo. Am J Pathol 171:1047–1057

    Article  PubMed  CAS  Google Scholar 

  26. Buijs JT, Henriquez NV, van Overveld PG, van der Horst G, Que I, Schwaninger R, Rentsch C, ten Dijke P, Cleton-Jansen AM, Driouch K, Lidereau R, Bachelier R, Vukicevic S, Clezardin P, Papapoulos SE, Cecchini MG, Lowik CW, van der Pluijm G (2007) Bone morphogenetic protein 7 in the development and treatment of bone metastases from breast cancer. Cancer Res 67:8742–8751

    Article  PubMed  CAS  Google Scholar 

  27. Rudin M, Rausch M, Stoeckli M (2005) Molecular imaging in drug discovery and development: potential and limitations of nonnuclear methods. Mol Imaging Biol 7:5–13

    Article  PubMed  Google Scholar 

  28. El Deiry WS, Sigman CC, Kelloff GJ (2006) Imaging and oncologic drug development. J Clin Oncol 24:3261–3273

    Article  PubMed  CAS  Google Scholar 

  29. Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, Richardson A, Weinberg RA (2004) Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA 101:4966–4971

    Article  PubMed  CAS  Google Scholar 

  30. Kuperwasser C, Dessain S, Bierbaum BE, Garnet D, Sperandio K, Gauvin GP, Naber SP, Weinberg RA, Rosenblatt M (2005) A mouse model of human breast cancer metastasis to human bone. Cancer Res 65:6130–6138

    Article  PubMed  CAS  Google Scholar 

  31. O’Gorman S, Fox DT, Wahl GM (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251:1351–1355

    Article  PubMed  CAS  Google Scholar 

  32. Sauer B (1994) Site-specific recombination: developments and applications. Curr Opin Biotechnol 5:521–527

    Article  PubMed  CAS  Google Scholar 

  33. Kaijzel EL, Karperien M, van der Horst G, van der Pluijm G, Lowik CW, Chan A (2006) Cell-based and molecular imaging tools for validating new therapies in the treatment of bone metabolic disorders and metastases. Curr Opin Mol Ther 8:477–479

    PubMed  CAS  Google Scholar 

  34. Notting IC, Buijs JT, Que I, Mintardjo RE, van der Horst G, Karperien M, Missotten GS, Jager MJ, Schalij-Delfos NE, Keunen JE, van der Pluijm G (2005) Whole-body bioluminescent imaging of human uveal melanoma in a new mouse model of local tumor growth and metastasis. Invest Ophthalmol Vis Sci 46:1581–1587

    Article  PubMed  Google Scholar 

  35. Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23:313–320

    Article  PubMed  CAS  Google Scholar 

  36. Chaudhari AJ, Darvas F, Bading JR, Moats RA, Conti PS, Smith DJ, Cherry SR, Leahy RM (2005) Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging. Phys Med Biol 50:5421–5441

    Article  PubMed  Google Scholar 

  37. Doubrovin M, Serganova I, Mayer-Kuckuk P, Ponomarev V, Blasberg RG (2004) Multimodality in vivo molecular-genetic imaging. Bioconjug Chem 15:1376–1388

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the EU for the programmes METABRE (FP6-503049) and PRIMA (FP6-504587) as well as the network of excellence EMIL (LSHC-CT2004-503569) and of the Dutch Cancer Foundation KWF (Koningin Wilhelmina Fonds project; UL2004–3028, RUL-2001-2485) for funding much of the research described above.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabri van der Pluijm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henriquez, N.V., van Overveld, P.G.M., Que, I. et al. Advances in optical imaging and novel model systems for cancer metastasis research. Clin Exp Metastasis 24, 699–705 (2007). https://doi.org/10.1007/s10585-007-9115-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-007-9115-5

Keywords

Navigation