Skip to main content

Advertisement

Log in

Multispecies dendroclimatic reconstructions of summer temperature in the European Alps enhanced by trees highly sensitive to temperature

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

We here analyze the tree-ring series from 42 high-altitude sites in a region of the European Alps centered over the 1° × 1° grid cell 46°N 10°E to reconstruct the summer temperature signal using an approach based on site chronologies and only on trees that are highly sensitive to temperature (HSTT). For the forest sites of Larix decidua Mill., Picea abies Karst., and Pinus cembra L., we find that HSTT trees, representing 33 %, 25 % and 27.5 % of all trees in the dataset, respectively, are growing larger tree-rings in recent periods (since approximately 1935 AD) compared with the other trees in the region. The temperature reconstruction based on the HSTT chronology is consistent with other reconstructions already available in the European Alps, well preserves the long-term temperature variability and suggests lower summer temperatures than those derived from the chronology avgALL (based on the entire dataset) during the periods 1725–1800 AD and 1845–1910 AD. Since 1935, the HSTT reconstruction is more efficient than the avgALL in recording the recent temperature trends. Overall, we stress the importance of testing for the presence of HSTT trees at each site, as their incidence may influence the temperature reconstructions as much as the other known factors related to, e.g., site characteristics, tree age and species sensitivity. HSTT trees may enhance the long-term climate signal for performing reliable climate reconstructions because they reduce potential biases derived from non-climatic influences on tree growth. Our results can further help to avoid the divergence problem with the instrumental records, particularly for those periods where the avgALL curve shows a tendency to smooth the long-term summer temperature signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baroni C, Martino S, Salvatore MC, Scarascia Mugnozza G, Schilirò L (2014) Thermomechanical stress-strain numerical modelling of deglaciation since the last glacial maximum in the Adamello Group (rhaetian Alps, Italy). Geomorphology 226:278–299. doi:10.1016/j.geomorph.2014.08.013

    Article  Google Scholar 

  • Beniston M, Diaz HF, Bradley RS (1997) Climatic change at high elevation sites: A review. Clim Chang 36:233–251

    Article  Google Scholar 

  • Böhm R, Jones P, Hiebl J, Frank D, Brunetti M, Maugeri M (2010) The early instrumental warm-bias: a solution for long Central European temperature series 1760–2007. Clim Chang 101:41–67

    Article  Google Scholar 

  • Briffa KR, Melvin TM (2011) A closer look at regional curve standardisation of tree-ring records: justification of the need, a warning of some pitfalls, and suggested improvements in its application. In: Diaz HF, Swetnam TW (eds) Hughes MK. Dendroclimatology, Progress and Prospects. Springer Verlag, pp. 113–145

    Google Scholar 

  • Briffa KR, Jones PD, Pilcher JR, Hughes MK (1988) Reconstructing summer temperatures in Northern Fennoscandia back to A.D. 1700 using tree-ring data from scots pine. Arct Antarct Alp Res 20:385–394

    Article  Google Scholar 

  • Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlén W, Zetterberg P, Eronen M (1992) Fennoscandian summers from AD 500: temperature changes on short and long timescales. Clim Dynam 7:111–119

    Article  Google Scholar 

  • Briffa KR, Schweingruber FH, Jones PD, Osborn T (1998a) Reduced sensitivity of recent tree growth to temperature at high northern latitudes. Nature 391:678–682

    Article  Google Scholar 

  • Briffa KR, Schweingruber FH, Jones PD, Osborn T, Harris I, Shiyatov SG, Vaganov EA, Grudd H (1998b) Trees tell of past climate: but are they speaking less clearly today? Philos Trans R Soc Lond 353B:65–73

    Article  Google Scholar 

  • Brunetti M, Maugeri M, Monti F, Nanni T (2006) Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. Int J Climatol 26:345–381

    Article  Google Scholar 

  • Bunn AG, Hughes MK, Salzer MW (2011) Topographically modified tree-ring chronologies as a potential means to improve paleoclimate inference. Clim Chang 105:627–634. doi:10.1007/s10584-010-0005-5

    Article  Google Scholar 

  • Büntgen U, Esper J, Frank DC, Nicolussi K, Schmidhalter M (2005) A 1052-year tree-ring proxy for alpine summer temperatures. Clim Dynam 25:141–153. doi:10.1007/s00382-005-0028-1

    Article  Google Scholar 

  • Büntgen U, Frank DC, Nievergelt D, Esper J (2006a) Summer temperature variations in the European Alps, AD 755–2004. J Clim 19(21):5606–5623

    Article  Google Scholar 

  • Büntgen U, Frank DC, Schmidhalter M, Neuwirth B, Seifert M, Esper J (2006b) Growth/climate response shift in a long subalpine spruce chronology. Trees 20:99–110. doi:10.1007/s00468-005-0017-3

    Article  Google Scholar 

  • Büntgen U, Frank D, Wilson R, Carrer M, Urbinati C, Esper J (2008) Testing for tree-ring divergence in the European Alps. Glob Change Biol 14:2443–2453. doi:10.1111/j.1365-2486.2008.01640.x

    Article  Google Scholar 

  • Büntgen U, Tegel W, Nicolussi K, McCormick M, Frank DC, Trouet V, Kaplan J, Herzig F, Heussner U, Wanner H, Luterbacher J, Esper J (2011) 2500 years of European climate variability and human susceptibility. Science 331:578–582

    Article  Google Scholar 

  • Carrer M, Urbinati C (2004) Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85:730–740

    Article  Google Scholar 

  • Carrer M, Urbinati C (2006) Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua. New Phytol 170:861–871

    Article  Google Scholar 

  • Carrer M, Nola P, Eduard JL, Motta R, Urbinati C (2007) Regional variability of climate–growth relationships in Pinus cembra high elevation forests in the Alps. J Ecol 95:1072–1083

    Article  Google Scholar 

  • Carturan L, Baroni C, Becker M, Bellin A, Cainelli O, Carton A, Casarotto C, Dalla Fontana G, Godio A, Martinelli T, Salvatore MC, Seppi R (2013) Decay of a long-term monitored glacier: careser Glacier (ortles-cevedale, European Alps). Cryosphere 7:1819–1838. doi:10.5194/tc-7-1819-2013

    Article  Google Scholar 

  • Carturan L, Baroni C, Carton A, Cazorzi F, Dalla Fontana G, Delpero C, Salvatore MC, Seppi R, Zanoner T (2014) Reconstructing fluctuations of La Mare Glacier (Eastern Italian Alps) in the late Holocene: new evidence for a Little Ice Age maximum around 1600 AD. Geogr Ann A 96:287–306. doi:10.1111/geoa.12048

    Article  Google Scholar 

  • Coppola A, Leonelli G, Salvatore MC, Pelfini M, Baroni C (2012) Weakening climatic signal since mid-20th century in European larch tree-ring chronologies at different altitudes from the Adamello-Presanella Massif (Italian Alps). Quat Res 77:344–354. doi:10.1016/j.yqres.2012.01.004

    Article  Google Scholar 

  • Coppola A, Leonelli G, Salvatore MC, Pelfini M, Baroni C (2013) Tree-ring-based summer mean temperature variations in the Adamello-Presanella Group. Clim Past 9:211–221

    Article  Google Scholar 

  • Corona C, Guiot J, Edouard JL, Chalié F, Büntgen U, Nola P, Urbinati C (2010) Millennium-long summer temperature variations in the European Alps as reconstructed from tree rings. Clim Past 6:379–400

    Article  Google Scholar 

  • D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the ‘divergence problem’ in northern forests: a review of the tree ring evidence and possible causes. Glob Planet Chang 60:289–305

    Article  Google Scholar 

  • Dirnböck T, Dullinger S, Grabherr G (2003) A regional impact assessment of climate and land-use change on alpine vegetation. J Biogeogr 30(3):401–417

    Article  Google Scholar 

  • Esper J, Cook ER, Krusic PJ, Peters K, Schweingruber FH (2003) Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Res 59:81–98

    Google Scholar 

  • Esper J, Frank DC, Wilson RJS, Briffa KR (2005) Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys Res Lett 32:L07711. doi:10.1029/2004GL021236

    Article  Google Scholar 

  • Esper J, Niederer R, Luterbacher J, Büntgen U, Frank D (2008) Calibration trails using very long instrumental and proxy data. In: Elferts D, Brumelis G, Gärtner H, Helle G, Schleser G (eds) TRACE - Tree Rings in Archaeology, Climatology and Ecology Vol. 6. GFZ Potsdam, Scientific Technical Report STR 08/05, Potsdam, pp. 45–50

    Google Scholar 

  • Esper J, Frank D, Büntgen U, Kirdyanov A (2009) Influence of pith offset on tree-ring chronology trend. In: Kaczka R, Malik I, Owczarek P, Gärtner H, Helle G, Heinrich I (eds) TRACE - Tree Rings in Archaeology, Climatology and Ecology Vol. 7. GFZ Potsdam, Scientific Technical Report STR 09/03, Potsdam, pp. 205–210

    Google Scholar 

  • Frank DC, Wilson R, Esper J (2005) Synchronous variability changes in alpine temperature and tree-ring data over the past two centuries. Boreas 34:498–505

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, New York

    Google Scholar 

  • Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot-London 90:537–544

    Article  Google Scholar 

  • Hughes MK (2011) Dendroclimatology in high-resolution paleoclimatology. In: Hughes MK, Swetnam TW, Diaz HF (eds) Dendroclimatology. Progress and Prospects. Springer, Berlin, pp. 17–34

    Chapter  Google Scholar 

  • Jacoby GC, D’Arrigo R (1995) Tree-ring width and density evidence of climatic and potential forest change in Alaska. Glob Geochem Cycles 9:227–234

    Article  Google Scholar 

  • Jones PD, Bradley RS (1992) Climatic variations in the longest instrumental records. In: Bradley RS, Jones PD (eds) Climate Since A.D.1500. Routledge, London, pp. 246–268

    Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459

    Article  Google Scholar 

  • Leonelli G, Pelfini M, Cherubini P (2008) Exploring the potential of tree-ring chronologies from the Trafoi Valley (Central Italian Alps) to reconstruct glacier mass balance. Boreas 37(1):169–178

    Article  Google Scholar 

  • Leonelli G, Pelfini M, Battipaglia G, Cherubini P (2009) Site-aspect influence on climate sensitivity over time of a high-altitude Pinus cembra tree-ring network. Clim Chang 96:185–201

    Article  Google Scholar 

  • Leonelli G, Pelfini M, D’Arrigo R, Haeberli W, Cherubini P (2011) Non-stationary responses of tree-ring chronologies and glacier mass balance to climate in the European Alps. Arct Antarct Alp Res 43:56–65

    Article  Google Scholar 

  • Loehle C (2009) A mathematical analysis of the divergence problem in dendroclimatology. Clim Chang 94:233–224. doi:10.1007/s10584-008-9488-8

    Article  Google Scholar 

  • Motta R, Nola P (2001) Growth trends and dynamics in subalpine forest stands in the Varaita Valley (piedmont, Italy) and their relationships with human activities and global change. J Veg Sci 12:219–230

    Article  Google Scholar 

  • Oberhuber W (2004) Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone. Tree Phys 24:291–301

    Article  Google Scholar 

  • Pauli H, Gottfried M, Grabherr G (2003) Effects of climate change on the alpine and nival vegetation of the Alps. J Mount Ecol 7:9–12

    Google Scholar 

  • Pelfini M, Leonelli G, Santilli M (2006) Climatic and environmental influences on mountain pine (Pinus montana miller) growth in the Central Italian Alps. Arct Antarct Alp Res 38(4):614–623

    Article  Google Scholar 

  • Pelfini M, Leonelli G, Trombino L, Zerboni A, Bollati I, Merlini A, Smiraglia C, Diolaiuti G (2014) New data on glacier fluctuations during the climatic transition at ~4,000 cal. year BP from a buried log in the forni Glacier forefield (Italian Alps). Rend Lincei-Sci Fis 25(4):427–437

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carrer M (2008) Age-dependent xylogenesis in timberline conifers. New Phytolo 177:199–208

    Google Scholar 

  • Salzer MW, Hughes MK, Bunn AG, Kipfmueller KF (2009) Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. PNAS 106(48):20348–20353

    Article  Google Scholar 

  • Salzer MW, Larson ER, Bunn AG (2014) Hughes MK (2014) changing climate response in near-treeline bristlecone pine with elevation and aspect. Environ Res Lett 9:114007

    Article  Google Scholar 

  • Schweingruber FH (1988) Tree rings. basics and applications of dendrochronology. Kluwer, Dordrecht

    Google Scholar 

  • Schweingruber FH (1996) Tree-rings and environment: dendroecology. Paul Haupt Publisher Vienna, Berne, Stuttgart

    Google Scholar 

  • Simolo C, Brunetti M, Maugeri M, Nanni T, Speranza A (2010) Understanding climate change-induced variations in daily temperature distributions over Italy. J Geophys Res – Atmosphere 115:D22110. doi:10.1029/2010JD014088

    Article  Google Scholar 

  • Trachsel M, Kamenik C, Grosjean M, McCarroll D, Moberg A, Brázdil R, Büntgen U, Dobrovolný P, Esper J, Frank DC, Friedrich M, Glaser R, Larocque-Tobler I, Nicolussi K, Riemann D (2012) Multi-archive summer temperature reconstruction for the European Alps, AD 1053–1996. Quat Sci Rev 46:66–79. doi:10.1016/j.quascirev.2012.04.021

    Article  Google Scholar 

  • WGMS (World Glacier Monitoring Service) (2012) Fluctuations of Glaciers 2005–2010. Zemp M, Frey H, Gartner-Roer I, Nussbaumer SU, Hoelzle M, Paul F, Haeberli W (eds.) vol. X. ICSU (WDS)/IUGG (IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, Switzerland

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

  • Zemp M, Hoelzle M, Haeberli W (2009) Six decades of glacier mass-balance observations: a review of the worldwide monitoring network. Ann Glaciol 50:101–111

    Article  Google Scholar 

Download references

Acknowledgments

This research has been developed within the PRIN 2010-2011 project (grant number 2010AYKTAB_006; national leader C. Baroni and local leaders C. Baroni and C. Smiraglia) and the project of strategic interest NEXTDATA (PNR National Research Programme 2011-2013; Project Leader A. Provenzale CNR-ISAC, WP leader V. Maggi DISAT-UNIMIB). We thank the several Authors that uploaded their raw data onto the ITRDB (see Online Resource 1 for references).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Leonelli.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonelli, G., Coppola, A., Baroni, C. et al. Multispecies dendroclimatic reconstructions of summer temperature in the European Alps enhanced by trees highly sensitive to temperature. Climatic Change 137, 275–291 (2016). https://doi.org/10.1007/s10584-016-1658-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-016-1658-5

Keywords

Navigation