Skip to main content

Advertisement

Log in

Growth/climate response shift in a long subalpine spruce chronology

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

A new Norway spruce (Picea abies (L.) Karst.) tree-ring width chronology based on living and historic wood spanning the AD 1108–2003 period is developed. This composite record combines 208 high elevation samples from 3 Swiss subalpine valleys, i.e., Lötschental, Goms, and Engadine. To retain potential high- to low-frequency information in this dataset, individual spline detrending and the regional curve standardization are applied. For comparison, 22 high elevation and 6 low-elevation instrumental station records covering the greater Alpine area are used. Previous year August–September precipitation and current year May–July temperatures control spruce ring width back to ∼1930. Decreasing (increasing) moving correlations with monthly mean temperatures (precipitation) indicate instable growth/climate response during the 1760–2002 period. Crucial June–August temperatures before ∼1900 shift towards May-July temperature plus August precipitation sensitivity after ∼1900. Numerous of comparable subalpine spruce chronologies confirm increased late-summer drought stress, coincidently with the recent warming trend. Comparison with regional-, and large-scale millennial-long temperature reconstructions reveal significant similarities prior to ∼1900 (1300–1900 mean r=0.51); however, this study does not fully capture the commonly reported 20th century warming (1900–1980 mean r=−0.17). Due to instable growth/climate response of the new spruce chronology, further dendroclimatic reconstruction is not performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anfodillo T, Rento S, Carraro V, Furlanetto L, Urbinati C, Carrer M (1998) Tree water relations and climate variations at the alpine timberline: seasonal changes of sap flux and xylem water potential in Larix deciduas Miller, Picea abies (L.) Karst. and Pinus cembra L. Ann Sci For 55:159–172

    Article  Google Scholar 

  • Auer I et al. (2005) A new instrumental precipitation dataset for the greater alpine region for the period 1800–2002. Int J Climatol 25:139–166

    Article  Google Scholar 

  • Barber VA, Juday GP, Finney BP (2000) Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405:668–672

    Article  PubMed  CAS  Google Scholar 

  • Bauer E, Claussen M, Brovkin V (2003) Assessing climate forcings of the Earth system for the past millennium. Geophys Res Lett 30/61276 doi:10.1029/2002GL016639

  • Becker M, Bert GD, Bouchon J, Dupouey JL, Picard JF, Ulrich E (1995) Long-term changes in forest productivity in northeastern France: the dendrochronological approach. In: Landmann G, Bonneau M (eds) Forest decline and atmospheric deposition effects in the French mountains. Springer, Berlin Heidelberg New York, pp 143–156

    Google Scholar 

  • Beniston M (2003) Climate change in mountain regions: a review of possible impacts. Clim Change 59:5–31

    Article  Google Scholar 

  • Böhm R, Auer I, Brunetti M, Maugeri M, Nanni T, Schöner W (2001) Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801

    Article  Google Scholar 

  • Bräker OU (1981) Der Alterstrend bei Jahrringdichten und Jahrringbreiten von Nadelhölzern und sein Ausgleich. Mitt der Forstl Bundesversuchsanst Wien 142:75–102

    Google Scholar 

  • Briffa KR (2000) Annual climate variability in the Holocene: interpreting the message of ancient trees. Quat Sci Rev 19:87–105

    Article  Google Scholar 

  • Briffa KR, Jones PD, Schweingruber FH (1988) Summer temperature patterns over Europe: A reconstruction from 1750 A.D. based on maximum latewood density indices of conifers. Quat Res 30:36–52

    Article  Google Scholar 

  • Briffa KR, Jones PD (1990) Basic chronology statistics and assessment. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: Applications in the environmental sciences. Kluwer Academic Publisher, Dodrecht, pp 137–152

    Google Scholar 

  • Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlen W, Zetterberg P, Eronen M (1992) Fennoscandian summers from AD 500: temperature changes on short and long timescales. Clim Dyn 7:111–119

    Article  Google Scholar 

  • Briffa KR, Jones PD, Schweingruber FH, Karlen W, Shiyatov SG (1996) Tree ring variables as proxy-climate indicators. Problems with low-frequency signals. In: Jones PD, Bradley RS, Jouzel J (eds) Climatic variations and forcing mechanisms of the last 2000 years. Springer, Berlin Heidelberg New York, pp 9–41

    Google Scholar 

  • Briffa KR, Jones PD, Schweingruber FH, Osborne TJ (1998a) Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature 393:450–455

    Article  CAS  Google Scholar 

  • Briffa KR, Schweingruber FH, Jones PD, Osborne TJ, Shiyatov SG, Vaganov EA (1998b) Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391:678–681

    Article  CAS  Google Scholar 

  • Briffa KR, Osborn TJ, Schweingruber FH, Harris IC, Jones PD, Shiyatov SG, Vaganov EA (2001) Low-frequency temperature variations from a northern tree ring density network. J Geophys Res 106:2929–2941

    Article  Google Scholar 

  • Büntgen U, Esper J, Schmidhalter M, Frank DC, Treydte K, Neuwirth B, Winiger M (2004) Using recent and historical larch wood to build a 1300-year Valais-chronology. In: Gärtner H, Esper J, Schleser G (eds) TRACE vol. 2, pp 85–92

  • Büntgen U, Esper J, Frank DC, Nicolussi K, Schmidhalter M (2005a) A 1052-year tree-ring proxy for Alpine summer temperatures. Clim Dyn Doi: 10.1007/s00382-005-0028-1

  • Büntgen U, Esper J, Bellwald I, Kalbermatten H, Frank DC, Freund H, Schmidhalter M, Bellwald W, Neuwirth B (2005b) 700 years of settlement and building history in the Lötschental/Valais. Erdkunde (in press)

  • Camuffo D, Enzi S (1994) Chronology of ‘Dry Fogs’ in Italy, 1374–1891. Theor Appl Climatol 50:31–33

    Article  Google Scholar 

  • Carrer M, Anfodillo T, Urbinati C, Carraro V (1998) High altitude forest sensitivity to global warming: results from long-term and short-term analyses in the Eastern Italien Alps. In: Beniston M, Innes JL (eds) The impacts of climate variability on forests, Lecture notes in earth sciences, 74. Springer, Berlin Heidelberg New York, pp 171–189

    Google Scholar 

  • Cook ER (1985) A time series analysis approach to tree-ring standardization. Lamont-Doherty Geological Observatory, New York, pp 171

    Google Scholar 

  • Cook ER, Peters K (1981) The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulle 41:45–53

    Google Scholar 

  • Cook ER, Kairiukstis LA (1990) Methods of dendrochronology: applications in environmental science. Kluwer, Dordrecht, pp 104–123

    Google Scholar 

  • Cook ER, Briffa KR, Meko DM, Graybill DA, Funkhouser G (1995) The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. The Holocene 5:229–237

    Article  Google Scholar 

  • Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. The Holocene 7:361–370

    Article  Google Scholar 

  • Cook ER, Buckley BM, D’Arrigo RD, Peterson MJ (2000) Warm-season temperatures since 1600 BC reconstructed from Tasmanian tree rings and their relationship to large-scale sea surface temperature anomalies. Clim Dyn 16:79–91

    Article  Google Scholar 

  • Cook ER, Woodhouse C, Eakin CM, Meko DM, Stahle DW (2004) Long-term aridity changes in the Western United States. Science 306:1015–1018

    Article  PubMed  CAS  Google Scholar 

  • D'Arrigo RD, Kaufmann RK, Davi N, Jacoby GC, Laskowski C, Myneni RB, Cherubini P (2004) Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. Global Biogeochem Cycles doi:10.1029/2004GB002249

  • D'Arrigo RD, Mashig E, Frank D, Wilson R, Jacoby G (2005) Temperature variability over the past millennium inferred from Northwestern Alaska tree rings. Clim Dyn 24:227–236

    Article  Google Scholar 

  • Davi N, Jacoby G, Wiles G (2003) Boreal temperature variability inferred from maximum latewood density and tree-ring width data, Wrangell Mt. Region, Alaska Quat Res 60:252–262

    Google Scholar 

  • Desplanque C, Rolland C, Schweingruber FH (1999) Influence of species and abiotic factors on extreme tree ring modulation. Trees 13:218–227

    Article  Google Scholar 

  • Dittmar C, Elling W (1999) Jahrringbreite von Fichte und Buche in Abhängigkeit von Witterung und Höhenlage. Forstw Cbl 118:251–270

    Article  Google Scholar 

  • Eckstein D (1982) Europe. In: Hughes MK, Kelly PM, Pilcher JR, LaMarch VC (eds) Climate from tree-rings. Cambridge University Press, Cambridge, pp 142–148

    Google Scholar 

  • Eckstein D, Sass U (1989) Dendroecological assessment of decline and recovery of fir and spruce in the Bavarian Forest. In: Bucher JB, Bucher-Wallin I (eds) Air pollution and forest decline. Proceedings of the 14th International Meeting for specialists in Air Pollution Effects on forest ecosystems, IUFRO P2.05, Interlaken, Switzerland, Oct. 2(8): pp 255–260

  • Eddy J (1977) Climate and the changing sun. Clim Change 1:173–190

    Article  Google Scholar 

  • Ellenberg H (1996) Die Vegetation Mitteleuropas mit den Alpen. 5. Aufl Ulmer, Stuttgart, pp 1095

    Google Scholar 

  • Elling W (1990) Schädigungsverlauf und Schädigungsgrad von Hochlagen-Fichtenbeständen in Nordostbayern. Allg Forstztg 45:74–77

    Google Scholar 

  • Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2252

    Article  PubMed  CAS  Google Scholar 

  • Esper J, Shiyatov SG, Mazepa VS, Wilson RJS, Graybill DA, Funkhouser G (2003a) Temperature-sensitive Tien Shan tree-ring chronologies show multi-centennial growth trends. Clim Dyn 21:699–706

    Article  Google Scholar 

  • Esper J, Cook ER, Krusic PJ, Peters K, Schweingruber FH (2003b) Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Res 59:81–98

    Google Scholar 

  • Esper J, Schweingruber FH (2004) Large-scale treeline changes recorded in Siberia. Geophys Res Lett 31:doi:10.1029/2003GL019178

  • Etheridge DM, Steele LP, Langenfelds RL, Francey RJ, Barnola J-M, Morgan VI (1996) Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J Geophys Res 106:4115–4128

    Article  Google Scholar 

  • Frank DC, Esper J (2005a) Characterization and climate response patterns of a high elevation, multi species tree-ring network for the European Alps. Dendrochronologia 22:107–121

    Article  Google Scholar 

  • Frank DC, Esper J (2005b) Temperature reconstructions and comparisons with instrumental data from a tree-ring network for the European Alps. Int J Climatol (in press)

  • Frank DC, Wilson RJS, Esper J (2005c) Synchronous variability changes in Alpine temperature and tree-ring data over the last two centuries. Boreas (in press)

  • Fritts HC (1976) Tree rings and climate. Academic Press, London, pp 567

    Google Scholar 

  • Grove JM (1988) The little ice age. Methuen & Co., London and New York, pp 498

    Google Scholar 

  • Hasenauer H, Nemani RR, Schadauer K, Running SW (1999) Forest growth response to changing climate between 1961 and 1990 in Austria. For Ecol Manage 12:209–219

    Article  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurements. Tree-Ring Bulle 43:69–78

    Google Scholar 

  • Holzhauser HP (2002) Dendrochronologische Auswertung fossiler Hölzer zur Rekonstruktion der nacheiszeitlichen Gletschergeschichte. Schweiz Z Forstwes 153:17–28

    Article  Google Scholar 

  • Jacoby GC, D'Arrigo RD (1989) Reconstructed northern hemisphere annual temperature since 1671 based on high-latitude tree-ring data from Northern America. Clim Change 14:39–59

    Article  CAS  Google Scholar 

  • Jacoby GC, D'Arrigo RD (1995) Tree ring width and density evidence of climatic and potential forest change in Alaska. Glob Biogeochem Cycles 9:227–234

    Article  CAS  Google Scholar 

  • Keller F, Kienast F, Beniston M (2000) Evidence of response of vegetation to environmental change on high-elevation sites in the Swiss Alps. Reg Environ Change 1:70–77

    Article  Google Scholar 

  • Kienast F, Wildi O, Brzeziecki B (1998) Potential impacts of climate change on species richness in mountain forests—an ecological risk assessment. Biol Conserv 83(3):291–305

    Article  Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459

    Article  Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeog 31:713–732

    Article  Google Scholar 

  • Kozlowski TT, Pallardy SG (1997) Physiology of wood plants. Academic Press, San Diego, California, pp 1–411

    Book  Google Scholar 

  • Lamb HH (1965) The early medieval warm epoch and its sequel. Palaeogeogr palaeoclimatol palaeoecol 1:13–37

    Article  Google Scholar 

  • Lingg W (1986) Dendroökologische Studien an Nadelbäumen im alpinen Trockental Wallis (Schweiz). Eidg Anst forstl Vers Wes 287:1–81

    Google Scholar 

  • Lloyd AH, Fastie CL (2002) Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. Clim Change 52:481–509

    Article  Google Scholar 

  • Luterbacher J, Rickli R, Xoplaki E, Tinguely C, Beck C, Pfister C, Wanner H (2001) The Late Maunder Minimum (1675-1715)—a key period for studying decadal scale climatic change in Europe. Clim Change 49:441–462

    Article  Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1999) Northern Hemisphere temperatures during the past millennium: inferences, uncertainties and limitations. Geophys Res Lett 26:759–762

    Article  Google Scholar 

  • Mann ME (2004) On smoothing potentially non-stationary climate time series. Geophys Res Lett 31:doi:10.1029/2004GLO19569

  • Masson-Delmotte V, Raffalli-Delerce G, Danis PA, Yiou P, Stievenard M, Guibal F, Mestre O, Bernard V, Goosse H, Hoffmann G, Jouzel J (2005) Changes in European precipitation seasonality and in drought frequencies revealed by a four-century-long tree-ring isotopic record from Brittany, western France. Clim Dyn 24:57–69

    Article  Google Scholar 

  • Meyer FD, Bräker OU (2001) Climate response in dominant and suppressed spruce trees, Picea abies (L.) Karst., on a subalpine and lower montane site in Switzerland. Ecoscience 8:105–114

    Google Scholar 

  • Mitchell VL (1967) An investigation of certain aspects of tree growth rates in relation to climate in the central Canadian boreal forest. Technical Report No 33. University of Wisconsin, Department of Meteorology, Wisconsin, pp 62

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563

    Article  PubMed  CAS  Google Scholar 

  • Neuwirth B (2005) Interannuelle Klima/Wachstums-Beziehungen zentraleuropäischer Bäume von AD 1901 bis 1971—eine dendroklimatologische Netzwerkanalyse. PhD thesis, University Bonn, pp 161

  • Neuwirth B, Esper J, Schweingruber FH, Winiger M (2004) Site ecological differences to the climatic forcing of spruce pointer years from the Lötschental, Switzerland. Dendrochronologia 21(2):69–78

    Article  Google Scholar 

  • Nicolussi K, Patzelt G (2000) Discovery of Early Holocene wood and peat on the forefield of the Pasterze Glacier, Eastern Alps, Austria. The Holocene 10:191–199

    Article  Google Scholar 

  • Osborn TJ, Briffa KR, Jones PD (1997) Adjusting variance for sample-size in tree-ring chronologies and other regional-mean time-series. Dendrochronologia 15:89–99

    Google Scholar 

  • Pfister C (1999) Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen 1496–1995. Bern, Stuttgart Wien, pp 304

    Google Scholar 

  • Rolland C, Petitcolas V, Michalet R (1998) Changes in radial tree growth for Picea abies, Larix decidua, Pinus cembra and Pinus uncinata near the alpine timberline since 1750. Trees 13:40–53

    Article  Google Scholar 

  • Rolland C, Desplanque C, Michalet R, Schweingruber FH (2000) Extreme tree rings in spruce (Picea abies (L.) Karst.) and fir (Abies alba Mill.) stands in relation to climate, site and space in the Southern French and Italian Alps. Arctic, Antarctic, and Alpine Research 32:1–13

    Article  Google Scholar 

  • Sander C, Eckstein D, Kyncl J, Dobry J (1995) The growth of spruce (Picea abies (L.) Karst.) in the Krkonose (Giant) Mountains as indicated by ring width and wood density. Ann Sci Forest 52:401–410

    Article  Google Scholar 

  • Schweingruber FH (1996) Tree rings and environment—dendrochronology. Haupt, Bern, pp 609

    Google Scholar 

  • Simkin T, Siebert L (1994) Volcanoes of the world: a regional directory, gazetteer, and chronology of volcanism during the last 10,000 years. 2nd edn. Geoscience Ress, Tucson, Arizona, pp 349

    Google Scholar 

  • Stahle DW, Cleaveland MK (1994) Tree-ring reconstructed rainfall over the southeastern USA during the Medieval Warm Period and Little Ice Age. Clim Change 26:199–212

    Article  Google Scholar 

  • Tessier L (1989) Spatio-temporal analysis of climate tree-ring relationships. New Phytol 111:517–529

    Article  Google Scholar 

  • Tranquillini W (1964) The physiology of plants at high altitudes. Annu Rev Plant Physiol 15:345–362

    Article  CAS  Google Scholar 

  • Trenberth K (1984) Some effects of finite sample size and persistence on meteorological statistics. Part I: Autocorrelations. Mon Weath Rev 112:2359–2368

    Article  Google Scholar 

  • Usoskin IG, Solanki SK, Schlüssler M (2003) Millennium-scale sunspot number reconstruction: evidence for an unusually active sun since the 1940s. Phys Rev Lett 91:1–4

    Article  CAS  Google Scholar 

  • Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP (1999) Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400:149–151

    Article  CAS  Google Scholar 

  • Valentini R, Anfodillo T, Ehlringer J (1994) Water sources utilization and carbon isotope composition (δ13C) of co-occurring species along an altitudinal gradient in the Italian Alps. Can J For Res 24:1575–1578

    Article  Google Scholar 

  • Vogel RB, Schweingruber FH (2001) Centennial variability of tree-ring width of spruce, fir and oak in relation to climate in Switzerland for the last 450 years. Dendrochronologia 19(2):197–209

    Google Scholar 

  • Wanner H, Pfister C, Brazdil R, Frich P, Frydendahl K, Jonsson T, Knigton J, Lamb HH, RosenØrn S, Wishman E (1995) Wintertime European circulation patterns during the Late Maunder Minimum cooling period (1675-1704). Theor Appl Climatol 51:167–175

    Article  Google Scholar 

  • Wanner H, Luterbacher J, Gyalistras D, Rickli R, Salvisberg E, Schmutz C (2000) Klimawandel im Schweizer Alpenraum. Vdf Hochschulverlag AG, Zürich, pp 294

    Google Scholar 

  • Wigley T, Briffa KR, Jones PD (1984) On the average of value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

  • Wilmking M, Juday GP, Barber VA, Zald HSJ (2004) Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biol 10(10):1724–1736

    Article  Google Scholar 

  • Wilson RJS, Luckman (2002) Tree-rin? reconstruction of maximum and minimum temperatures and the diurnal temperature range in British Columbia. Canada Dendrochronologia 20:1–12

    Google Scholar 

  • Wilson RJS, Topham J (2004) Violins and climate. Theor Appl Climatol 77:9–24

    Article  Google Scholar 

  • Wilson RJS, Elling W (2004) Temporal instability in tree-growth/climate response in the lower Bavarian Forest region: implications for dendroclimatic reconstructions. Trees 18:19–28

    Google Scholar 

  • Wilson RJS, Esper J, Luckman BH (2004) Utilizing historical tree-ring data for dendroclimatology: a case study from the Bavarian Forest, Germany. Dendrochronologia 21(2):53–68

    Article  Google Scholar 

  • Woodhouse CA, Overpeck JT (1998) 2000 years of drought variability in the central United States. Bull Am Meteorol Soc 79(12):2693–2714

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Böhm for providing instrumental data, the ITRDB contributors for tree-ring data, and K. Treydte and R.J.S. Wilson for comments and discussion. Supported by the Swiss National Science Foundation Project EURO-TRANS (#200021-105663) and the European Union Project ALP-IMP (BBW #01.0498-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Büntgen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Büntgen, U., Frank, D.C., Schmidhalter, M. et al. Growth/climate response shift in a long subalpine spruce chronology. Trees 20, 99–110 (2006). https://doi.org/10.1007/s00468-005-0017-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-005-0017-3

Keywords

Navigation