Skip to main content

Advertisement

Log in

Climate scenarios of sea level rise for the northeast Atlantic Ocean: a study including the effects of ocean dynamics and gravity changes induced by ice melt

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Here we present a set of regional climate scenarios of sea level rise for the northeast Atlantic Ocean. In this study, the latest observations and results obtained with state-of-the-art climate models are combined. In addition, regional effects due to ocean dynamics and changes in the Earth’s gravity field induced by melting of land-based ice masses have been taken into account. The climate scenarios are constructed for the target years 2050 and 2100, for both a moderate and a large rise in global mean atmospheric temperature (2 °C and 4 °C in 2100 respectively). The climate scenarios contain contributions from changes in ocean density (global thermal expansion and local steric changes related to changing ocean dynamics) and changes in ocean mass (melting of mountain glaciers and ice caps, changes in the Greenland and Antarctic ice sheets, and (minor) terrestrial water-storage contributions). All major components depend on the global temperature rise achieved in the target periods considered. The resulting set of climate scenarios represents our best estimate of twenty-first century sea level rise in the northeast Atlantic Ocean, given the current understanding of the various contributions. For 2100, they yield a local rise of 30 to 55 cm and 40 to 80 cm for the moderate and large rise in global mean atmospheric temperature, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alley RB, Clark P, Huybrechts P, Joughin I (2005) Ice-sheet and sea-level changes. Science 310:456–460

    Article  Google Scholar 

  • Bahr DBN, Meier MF, Peckham SD (1997) The physical basis of glacier volume-area scaling. J Geophys Res 102:20355–20362

    Article  Google Scholar 

  • Bassett SE, Milne GA, Bentley MJ, Huybrechts P (2007) Modelling Antarctic sea-level data to explore the possibility of a dominant Antarctic contribution to meltwater pulse 1A. Quat Sci Rev 26:2113–2127

    Article  Google Scholar 

  • Bindoff N, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Qur C, Levitus S, Nojiri Y, Shum CK, Talley LD, Unnikrishnan A (2007) Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Mille HL (eds) Climate change 2007: The physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Boyer TP, Levitus S, Antonov JI, Locarnini RA, Garcia HE (2005) Linear trends in salinity for the World Ocean, 1955–1998. Geophys Res Lett 32:L01604. doi:10.1029/2004GL021791

    Article  Google Scholar 

  • Brohan P, Kennedy JJ, Haris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106

    Article  Google Scholar 

  • Cazenave A, Nerem RS (2004) Present-day sea-level change: observations and causes. Rev Geophys 42:RG3001. doi:10.1029/2003RG000139

    Article  Google Scholar 

  • Church JA, Gregory JM, Huybrechts P, Kuhn M, Lambeck K, Nhuan MT, Qin D, Woodworth PL (2001) Chapter 11. Changes in sea level. In: Houghton JT et al (eds) Climate Change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate Change. Cambridge University Press, Cambridge, pp 639–693

    Google Scholar 

  • Church JA, White NJ (2006) A twentieth century acceleration in global sea-level rise. Geophys Res Lett 33:L01602. doi:10.1029/2005GL02482

    Article  Google Scholar 

  • Clark PU, Mitrovica JX, Milne GA, Tamisiea ME (2002) Sea-level fingerprining as a direct test for the source of global melt water pulse 1A. Science 295:2438–2441

    Google Scholar 

  • Collins WD, Bitz CM, Blackmon MI, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The community climate system model version 3: CCSM3. J Climate 19:2122–2143. doi:10.1175/JCLI3761.1

    Article  Google Scholar 

  • Dyurgerov MB, Meier MF (2005) Glaciers and the changing earth system: A 2004 snapshot. Occasional Paper 58. University of Colorado, Institute of Arctic and Alpine Research. http://instaar.colorado.edu/other/occ_papers.htm

  • Farrell WE, Clark JA (1976) On postglacial sea level. Geophys J Int 46:647–667. doi:10.1111/j.1365-246X.1976.tb01252.x

    Google Scholar 

  • Flato GM (2005) The third generation coupled global climate model (CGCM3). http://www.cccma.ec.gc.ca/models/cgcm3.shtml

  • Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler K-G, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) ClimateCarbon cycle feedback analysis: results from the C4MIP model intercomparison. J Climate 19:3337–3353

    Article  Google Scholar 

  • Furevik T, Bentsen M, Drange H, Kvamsto N, Sorteberg A (2003) Description and evaluation of the Bergen climate model: ARPEGE coupled with MICOM. Clim Dyn 21:27–51

    Article  Google Scholar 

  • Gerdes R, Hurlin W, Griffies S (2006) Sensitivity of a global ocean model to increased run-off from Greenland. Ocean Model 12:416–435

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks HT, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  • Gregory JM, Church JA, Boer GJ, Dixon KW, Flato GM, Jackett DR, Lowe JA, O’Farrell SP, Roeckner E, Russell GL, Stouffer RJ, Winton M (2001) Comparison of results from several AOGCMs for global and regional sea-level change 1900–2100. Clim Dyn 18:241–253

    Article  Google Scholar 

  • Gregory JM, Huybrechts P (2006) Ice sheet contributions to future sea-level change. Philos Trans R Soc Lond A 364:1709–1731. doi:10.1098/rsta.2006.1796

    Article  Google Scholar 

  • Gregory JM, Oerlemans H (1998) Simulated future sea-level rise due to glacier melt based on regionally and seasonally resolved temperature change. Nature 391:474–476

    Article  Google Scholar 

  • Hegerl GC, Crowley T, Hyde W, Frame D (2006) Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature 440:1029–1032

    Article  Google Scholar 

  • Holgate SJ, Woodworth PL (2004) Evidence for enhanced coastal sea level rise during the 1990s. Geophys Res Lett 31:L07305

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate Change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 881

    Google Scholar 

  • Houghton JT, Meira Filho LG, Callender, BA, Harris N, Kattenberg A, Maskell K (eds) (1995) Climate Change 1995: the cience of Climate Change. Contribution of working group 1 to the second assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Howat IM, Joughin I, Tulaczyk S, Gogineni S (2005) Rapid retreat and acceleration of Helheim Glacier, east Greenland. Geophys Res Lett 32:L22502. doi:10.1029/2005GL024737

    Article  Google Scholar 

  • Huybrechts P, Gregory JM, Janssens I, Wild M (2004) Modelling Antarctic and Greenland volume changes during the twentieth and twenty-first centuries forced by GCM time slice integrations. Glob Planet Change 42:83–105. doi:10.1016/j.gloplacha.2003.11.011

    Article  Google Scholar 

  • Johannessen OM, Khvorostovsky K, Miles MW, Bobylev LP (2005) Recent ice-sheet growth in the interior of Greenland. Science 310:1013–1016. doi:10.1126/science.1115356.

    Article  Google Scholar 

  • Joughin I, Abdalati W, Fahnestock M (2004) Large fluctuations in speed on Greenlands Jakobshavn Isbrae glacier. Nature 432:608–610. doi:10.1038/nature03130

    Article  Google Scholar 

  • Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Climate 19:3952–3972

    Article  Google Scholar 

  • K-1 model developers (2004) K-1 coupled model (MIROC) description. Technical report 1. Center for Climate System Research, University of Tokyo

  • Kaser G, Cogley JG, Dyurgerov MB, Meier MF, Ohmura A (2006) Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophys Res Lett 33:L19501. doi:10129/2006GL027511

    Article  Google Scholar 

  • Krabill W, Hanna E, Huybrechts P, Abdalati W, Cappelen J, Csatho B, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Yungel J (2004) Greenland Ice Sheet: increased coastal thinning. Geophys Res Lett 31:L24402. doi:10.1029/2004GL021533

    Article  Google Scholar 

  • Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Mille HL (eds) Climate Change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Lenderink G, van Ulden AP, van den Hurk BJJM, Keller F (2007) Climate scenarios of temperature and precipitation for the Netherlands: a study on combining global and regional climate model results. Clim Dyn 29:157–176

    Article  Google Scholar 

  • Levermann A, Griesel A, Hofmann M, Montoya M, Rahmstorf S (2004) Dynamic sea level changes following changes in the thermohaline circulation. Clim Dyn 24:347–354

    Article  Google Scholar 

  • Levitus S, Antonov JI, Boyer TP, Stephens C (2000) Warming of the world ocean. Science 287:2225–2229

    Article  Google Scholar 

  • Lucarini L, Russell GL (2002) Comparison of mean climate trends in the northern hemisphere between National Centers for Environmental Prediction and two atmosphere-ocean model forced runs. J Geophys Res 107(D15):4269. doi:10.1029/2001JD001247

  • Meehl G, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007a) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Mille HL (eds) Climate Change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007b) THE WCRP CMIP3 Multimodel Dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Article  Google Scholar 

  • Meier MF (1984) Contribution of small glaciers to global sea level. Science 226:1418–1421

    Article  Google Scholar 

  • Meier MF, Dyurgerov MB, Rick UK, O’Neel S, Pfeffer WT, Anderson RS, Anderson SP, Glazovsky AF (2007) Glaciers dominate eustatic sea-level ris ein the 21st century. Science 317:1064–1067. doi:10.1126/science.1143906

    Article  Google Scholar 

  • Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea level change. Nature 409:1026–1029

    Article  Google Scholar 

  • Ohmura A (2004) Cryosphere during the twentieth century, the state of the plane. IUGG Geophys Monogr 150:239–257

    Google Scholar 

  • Oppenheimer M (1998) Global warming and the stability of the West Antarctic Ice Sheet. Nature 393:325–332

    Article  Google Scholar 

  • Otto-Bliesner BL, Marshall SJ, OJT, Miller GH, Hu A, CAPE Last Interglaciation Project members (2006) Simulating Arctic climate warmth and ice-field retreat in the last interglaciation. Science 311:1751–1753. doi:10.1126/science.1120808

    Article  Google Scholar 

  • Raper SCB, Braithwaite RJ (2006) Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature 439:311–331

    Article  Google Scholar 

  • Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy JJ, Vanicek M, Ansell T, Tett SFB (2006) Improved analyses of changes and uncertainties in marine temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. J Climate 19:446–469

    Article  Google Scholar 

  • Ridley JK, Huybrechts P, Gregory JM, Lowe JA (2005) Elimination of the Greenland ice sheet in a high CO2 climate. J Climate 17:3409–3427

    Article  Google Scholar 

  • Rignot E, Casassa G, Gogineni P, Krabill W, Rivera A, Thomas R (2004) Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys Res Lett 31:L18401. doi:10.1029/2004GL020697

    Article  Google Scholar 

  • Rignot EG, Casassa G, Gogineni P, Kanagaratman P, Krabill W, Pritchard H, Rivera A, Thomas R, Turner J, Vaughan D (2005) Recent ice loss from the Fleming and other glaciers, Wordie Bay, West Antarctic Peninsula. Geophys Res Lett 32:1–4

    Article  Google Scholar 

  • Rignot EG, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland ice sheet. Science 311:986–990

    Article  Google Scholar 

  • Rignot EG, Thomas RH (2002) Mass balance of polar ice sheets. Science 297:1502–1506

    Article  Google Scholar 

  • Scambos T, Bohlander JA, Shuman CA, Skvarca P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys Res Lett 31:L18402. doi:10.1029/2004GL020670

    Article  Google Scholar 

  • Schmidt GA, Ruedy R, Hansen JE, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y, Del Genio A, Faluvegi G, Friend AD, Hall TM, Hu Y, Kelley M, Kiang NY, Koch D, Lacis AA, Lerner J, Lo KK, Miller RL, Nazarenko L, Oinas V, Perlwitz J, Rind D, Romanou A, Russell GL, Sato M, Shindell DT, Stone PH, Sun S, Tausnev N, Thresher D, Yao, MS (2004) Present day atmospheric simulations using GISS ModelE: comparison to in-situ, satellite and reanalysis data. J Climate 19:153–192

    Article  Google Scholar 

  • Schmittner A, Latif M, Schneider B (2005) Model projections of the North Atlanioc thermohaline circulation for the 21st century assessed by observations. Geophys Res Lett 32:L23710

    Article  Google Scholar 

  • Shepherd A, Wingham D (2007) Recent sea-level contributions of the Antractic and Greenland ice sheets. Science 315:1529–1532

    Article  Google Scholar 

  • Shepherd A, Wingham D, Rignot E (2004) Warm ocean is eroding West Antarctic Ice Sheet. Geophys Res Lett 31:L23402. doi:10.1029/2004GL02110

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Mille HL (eds) (2007a) Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Mille HL (2007b) Summary for policymakers. In: IPCC, 2007: Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Stainforth DA, Aina T, Christensen C, Collins M, Faull N, Frame DJ, Kettleborough JA, Knight S, Martin A, Murphy JM, Piani C, Sexton D, Smith LA, Spicer RA, Thorpe A, Allen MR (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433:403–406

    Article  Google Scholar 

  • Thomas R, Rignot E, Casassa G, Kanagaratnam P, Acuna C, Akins T, Brecher H, Frederick E, Gogineni P, Krabil W, Manizade S, Ramamoorthy H, Rivera A, Russell R, Sonntag J, Swift R, Yungel J, Zwally J (2004) Accelerated sea-level rise from West Antarctica. Science 306:255–258. doi:10.1126/science.1099650

    Article  Google Scholar 

  • van de Wal RSW, Wild M (2001) Modelling the response of glaciers to climate change, applying volume-area scaling in combination with a high resolution GCM. Clim Dyn 18:359–366

    Article  Google Scholar 

  • van den Hurk BJJM, Klein Tank AMG, Lenderink, G, van Ulden AP, van Oldenborgh GJ, Katsman CA, van den Brink HW, Keller F, Bessembinder JJF, Burgers G, Komen GJ, Hazeleger W, Drijfhout SS (2006) KNMI Climate Change Scenarios 2006 for the Netherlands. Technical report WR-2006-01, KNMI. www.knmi.nl/climatescenarios

  • van der Schrier G, Weber SL, Drijfhout SS (2004) Low-frequency sea-level variability in the Atlantic. Glob Planet Change 43:129–1442

    Article  Google Scholar 

  • van Ulden AP, van Oldenborgh GJ (2006) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Atmos Chem Phys 6:863–881

    Article  Google Scholar 

  • Vaughan DG (2008) West Antarctic ice sheet collapse—the fall and rise of a paradigm. Clim Change (in press)

  • Velicogna I, Wahr J (2005) Greenland mass balance from GRACE. Geophys Res Lett 32:L18505

    Article  Google Scholar 

  • Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Change 54:251–267

    Article  Google Scholar 

  • Volodin EM, Diansky NA(2004) El-niño reproduction in coupled general circulation model of atmosphere and ocean. Russ Meteorol Hydrol 12:5–14

    Google Scholar 

  • Washington WM, Weatherly JW, Meehl GA, Semtner Jr AJ, Bettge T, Craig A, Strand Jr W, Arblaster J, Wayland V, James R, Zhang Y (2000) Parallel climate model (PCM) control and transient simulations. Clim Dyn 16:755–774

    Article  Google Scholar 

  • Wigley TML, Raper SCB (2005) Extended scenarios for glacier melt due to anthropogenic forcing. Geophys Res Lett 32:L05704. doi:10.1029/2004GL021238

    Article  Google Scholar 

  • Woodward RS (1888) On the form and position of mean sea level. US Geol Surv Bull 48:87–170.

    Google Scholar 

  • Yu Y, Zhang X, Guo Y (2004) Global coupled ocean- atmosphere general circulation models in LASG/IAP. Adv Atmos Sci 21:444–455

    Article  Google Scholar 

  • Yukimoto S, Noda A (2002) Improvements of the Meteorological Research Institute Global Ocean-atmosphere Coupled GCM (MRI-CGCM2) and its climate sensitivity. Technical report 10, NIES, Japan

  • Zwally H, Giovinetto M, Li J, Cornejo H, Beckley M, Brenner A et al (2005) Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea level rise: 1992–2002. J Glaciol 51:509–527

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline A. Katsman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsman, C.A., Hazeleger, W., Drijfhout, S.S. et al. Climate scenarios of sea level rise for the northeast Atlantic Ocean: a study including the effects of ocean dynamics and gravity changes induced by ice melt. Climatic Change 91, 351–374 (2008). https://doi.org/10.1007/s10584-008-9442-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-008-9442-9

Keywords

Navigation