Skip to main content

Advertisement

Log in

Transposable elements and G-quadruplexes

  • Review
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

A significant part of eukaryotic genomes is formed by transposable elements (TEs) containing not only genes but also regulatory sequences. Some of the regulatory sequences located within TEs can form secondary structures like hairpins or three-stranded (triplex DNA) and four-stranded (quadruplex DNA) conformations. This review focuses on recent evidence showing that G-quadruplex-forming sequences in particular are often present in specific parts of TEs in plants and humans. We discuss the potential role of these structures in the TE life cycle as well as the impact of G-quadruplexes on replication, transcription, translation, chromatin status, and recombination. The aim of this review is to emphasize that TEs may serve as vehicles for the genomic spread of G-quadruplexes. These non-canonical DNA structures and their conformational switches may constitute another regulatory system that, together with small and long non-coding RNA molecules and proteins, contribute to the complex cellular network resulting in the large diversity of eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TEs:

Transposable elements

LTR:

Long terminal repeat

PQS:

Potential quadruplex-forming sequence

References

  • Abad JP, Villasante A (1999) The 3′ non-coding region of the Drosophila melanogaster HeT-A telomeric retrotransposon contains sequences with propensity to form G-quadruplex DNA. FEBS Lett 453:59–62

    Article  CAS  PubMed  Google Scholar 

  • Barrett LW, Fletcher S, Wilton SD (2012) Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci 69:3613–3634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beaudoin J-D, Perreault J-P (2013) Exploring mRNA 3′-UTR G-quadruplexes: evidence of roles in both alternative polyadenylation and mRNA shortening. Nucleic Acids Res 41:5898–5911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biémont C, Vieira C (2006) Genetics: junk DNA as an evolutionary force. Nature 443:521–524

    Article  PubMed  Google Scholar 

  • Boán F, Gómez-Márquez J (2010) In vitro recombination mediated by G-quadruplexes. Chembiochem: Eur J Chem Biol 11:331–334

    Article  Google Scholar 

  • Bochman ML, Paeschke K, Zakian VA (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet 13:770–780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bohr VA (2008) Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance. Trends Biochem Sci 33:609–620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bousios A, Darzentas N, Tsaftaris A, Pearce SR (2010) Highly conserved motifs in non-coding regions of Sirevirus retrotransposons: the key for their pattern of distribution within and across plants? BMC Genomics 11:89

    Article  PubMed Central  PubMed  Google Scholar 

  • Brázda V, Hároníková L, Liao JCC, Fojta M (2014) DNA and RNA quadruplex-binding proteins. Int J Mol Sci 15:17493–17517

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown JA, Bulkley D, Wang J et al (2014) Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat Struct Mol Biol 21:633–640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Broxson C, Beckett J, Tornaletti S (2011) Transcription arrest by a G quadruplex forming-trinucleotide repeat sequence from the human c-myb gene. Biochemistry 50:4162–4172

    Article  CAS  PubMed  Google Scholar 

  • Bureau TE, Wessler SR (1992) Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4:1283–1294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cerofolini L, Amato J, Giachetti A, Limongelli V, Novellino E, Parrinello M et al (2014) G-triplex structure and formation propensity. Nucleic Acids Res 42:13393–13404

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen L, Dahlstrom JE, Lee S-H, Rangasamy D (2012) Naturally occurring endo-siRNA silences LINE-1 retrotransposons in human cells through DNA methylation. Epigenetics 7:758–771

    Article  CAS  PubMed  Google Scholar 

  • Cui F, Sirotin MV, Zhurkin VB (2011) Impact of Alu repeats on the evolution of human p53 binding sites. Biol Direct 6:2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dai J, Carver M, Punchihewa C, Jones RA, Yang D (2007) Structure of the Hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Res 35:4927–4940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Downs JA, Jackson SP (1999) Involvement of DNA end-binding protein Ku in Ty element retrotransposition. Mol Cell Biol 19:6260–6268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guerrero-Bosagna C, Weeks S, Skinner MK (2014) Identification of genomic features in environmentally induced epigenetic transgenerational inherited sperm epimutations. PLoS ONE 9, e100194

    Article  PubMed Central  PubMed  Google Scholar 

  • Han JS (2010) Non-long terminal repeat (non-LTR) retrotransposons: mechanisms, recent developments, and unanswered questions. Mob DNA 1:15

    Article  PubMed Central  PubMed  Google Scholar 

  • Hangauer MJ, Vaughn IW, McManus MT (2013) Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet 9, e1003569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hegyi H (2015) Enhancer-promoter interaction facilitated by transiently forming G-quadruplexes. Sci Rep 5:9165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Howell R, Usdin K (1997) The ability to form intrastrand tetraplexes is an evolutionarily conserved feature of the 3′ end of L1 retrotransposons. Mol Biol Evol 14:144–155

    Article  CAS  PubMed  Google Scholar 

  • Huda A, Bowen NJ, Conley AB, Jordan IK (2011a) Epigenetic regulation of transposable element derived human gene promoters. Gene 475:39–48

    Article  CAS  PubMed  Google Scholar 

  • Huda A, Tyagi E, Mariño-Ramírez L et al (2011b) Prediction of transposable element derived enhancers using chromatin modification profiles. PLoS ONE 6, e27513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huppert JL, Balasubramanian S (2007) G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res 35:406–413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jayaraj GG, Pandey S, Scaria V, Maiti S (2012) Potential G-quadruplexes in the human long non-coding transcriptome. RNA Biol 9:81–86

    Article  CAS  PubMed  Google Scholar 

  • Kapitonov VV, Jurka J (2005) RAG1 core and V(D)J recombination signal sequences were derived from transib transposons. PLoS Biol 3, e181

    Article  PubMed Central  PubMed  Google Scholar 

  • Kapusta A, Kronenberg Z, Lynch VJ et al (2013) Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet 9, e1003470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kejnovská I, Tůmová M, Vorlícková M (2001) (CGA)(4): parallel, anti-parallel, right-handed and left-handed homoduplexes of a trinucleotide repeat DNA. Biochim Biophys Acta 1527:73–80

    Article  PubMed  Google Scholar 

  • Kejnovsky E, Lexa M (2014) Quadruplex-forming DNA sequences spread by retrotransposons may serve as genome regulators. Mobile Genet Elem 4, e28084

    Article  Google Scholar 

  • Kejnovský E, Michalovova M, Steflova P et al (2013) Expansion of microsatellites on evolutionary young Y chromosome. PLoS ONE 8, e45519

    Article  PubMed Central  PubMed  Google Scholar 

  • Lawrence DC, Stover CC, Noznitsky J et al (2003) Structure of the intact stem and bulge of HIV-1 Psi-RNA stem-loop SL1. J Mol Biol 326:529–542

    Article  CAS  PubMed  Google Scholar 

  • Lever A, Gottlinger H, Haseltine W, Sodroski J (1989) Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions. J Virol 63:4085–4087

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lexa M, Kejnovský E, Steflová P et al (2014a) Quadruplex-forming sequences occupy discrete regions inside plant LTR retrotransposons. Nucleic Acids Res 42:968–978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lexa M, Steflova P, Martinek T et al (2014b) Guanine quadruplexes are formed by specific regions of human transposable elements. BMC Genomics 15:1032

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu S, Yeh C-T, Ji T et al (2009) Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet 5, e1000733

    Article  PubMed Central  PubMed  Google Scholar 

  • Macas J, Koblízková A, Navrátilová A, Neumann P (2009) Hypervariable 3′ UTR region of plant LTR-retrotransposons as a source of novel satellite repeats. Gene 448:198–206

    Article  CAS  PubMed  Google Scholar 

  • McCue AD, Nuthikattu S, Slotkin RK (2013) Genome-wide identification of genes regulated in trans by transposable element small interfering RNAs. RNA Biol 10:1379–1395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Millevoi S, Moine H, Vagner S (2012) G-quadruplexes in RNA biology. WIRES 3:495–507

    Article  CAS  Google Scholar 

  • Morris MJ, Negishi Y, Pazsint C et al (2010) An RNA G-quadruplex is essential for cap-independent translation initiation in human VEGF IRES. J Am Chem Soc 132:17831–17839

    Article  CAS  PubMed  Google Scholar 

  • Nadir E, Margalit H, Gallily T, Ben-Sasson SA (1996) Microsatellite spreading in the human genome: evolutionary mechanisms and structural implications. Proc Natl Acad Sci U S A 93:6470–6475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nambiar M, Goldsmith G, Moorthy BT et al (2011) Formation of a G-quadruplex at the BCL2 major breakpoint region of the t(14;18) translocation in follicular lymphoma. Nucleic Acids Res 39:936–948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paramasivam M, Membrino A, Cogoi S et al (2009) Protein hnRNP A1 and its derivative Up1 unfold quadruplex DNA in the human KRAS promoter: implications for transcription. Nucleic Acids Res 37:2841–2853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pearson CE, Sinden RR (1998) Trinucleotide repeat DNA structures: dynamic mutations from dynamic DNA. Curr Opin Struct Biol 8:321–330

    Article  CAS  PubMed  Google Scholar 

  • Pezic D, Manakov SA, Sachidanandam R, Aravin AA (2014) piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells. Genes Dev 28:1410–1428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piekna-Przybylska D, Sullivan MA, Sharma G, Bambara RA (2014) U3 region in the HIV-1 genome adopts a G-quadruplex structure in its RNA and DNA sequence. Biochemistry 53:2581–2593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piriyapongsa J, Jordan IK (2008) Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14:814–821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quante T, Otto B, Brázdová M et al (2012) Mutant p53 is a transcriptional co-factor that binds to G-rich regulatory regions of active genes and generates transcriptional plasticity. Cell Cycle 11:3290–3303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rajendran A, Endo M, Hidaka K, Sugiyama H (2014) Direct and single-molecule visualization of the solution-state structures of G-hairpin and G-triplex intermediates. Angew Chem Int Ed 53:4107–4112

    Article  CAS  Google Scholar 

  • Rich A (1993) DNA comes in many forms. Gene 135:99–109

    Article  CAS  PubMed  Google Scholar 

  • Sabot F, Schulman AH (2006) Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity 97:381–388

    Article  CAS  PubMed  Google Scholar 

  • Sanders CM (2010) Human Pif1 helicase is a G-quadruplex DNA-binding protein with G-quadruplex DNA-unwinding activity. Biochem J 430:119–128

    Article  CAS  PubMed  Google Scholar 

  • Savage AL, Bubb VJ, Breen G, Quinn JP (2013) Characterisation of the potential function of SVA retrotransposons to modulate gene expression patterns. BMC Evol Biol 13:101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schwarzbauer K, Bodenhofer U, Hochreiter S (2012) Genome-wide chromatin remodeling identified at GC-rich long nucleosome-free regions. PLoS ONE 7, e47924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smestad J, Maher L (2015) Putative G-quadruplex forming sequence signatures in genes differentially transcribed upon loss of BLM or WRN helicases. BioRxiv. doi:10.1101/013664

    Google Scholar 

  • Steinbauerová V, Neumann P, Novák P, Macas J (2011) A widespread occurrence of extra open reading frames in plant Ty3/gypsy retrotransposons. Genetica 139:1543–1555

    Article  PubMed  Google Scholar 

  • Sundquist WI, Heaphy S (1993) Evidence for interstrand quadruplex formation in the dimerization of human immunodeficiency virus 1 genomic RNA. Proc Natl Acad Sci U S A 90:3393–3397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Szak ST, Pickeral OK, Makalowski W et al (2002) Molecular archeology of L1 insertions in the human genome. Genome Biol 3, research0052

    Article  PubMed Central  PubMed  Google Scholar 

  • Tlučková K, Marušič M, Tóthová P et al (2013) Human papillomavirus G-quadruplexes. Biochemistry 52:7207–7216

    Article  PubMed  Google Scholar 

  • Vicient C, Suoniemi A, Anamthawat-Jónsson K et al (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11:1769–1784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Volff J-N (2006) Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. BioEssays 28:913–922

    Article  CAS  PubMed  Google Scholar 

  • Watson JD, Crick FHC (2003) A structure for deoxyribose nucleic acid. 1953. Nature 421:397–398

    CAS  PubMed  Google Scholar 

  • Whitehouse I, Owen-Hughes T (2010) ATRX: Put me on repeat. Cell 143:335–336

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Wong HM, Huppert JL (2009) Stable G-quadruplexes are found outside nucleosome-bound regions. Mol BioSyst 5:1713–1719

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Shin-ya K, Brosh RM (2008) FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol Cell Biol 28:4116–4128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Czech Science Foundation (grant 15-02891S). We would like to thank Professor Boris Vyskot for a critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Kejnovsky.

Additional information

Responsible Editors: Maria Assunta Biscotti, Pat Heslop-Harrison and Ettore Olmo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kejnovsky, E., Tokan, V. & Lexa, M. Transposable elements and G-quadruplexes. Chromosome Res 23, 615–623 (2015). https://doi.org/10.1007/s10577-015-9491-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-015-9491-7

Keywords

Navigation