Skip to main content
Log in

Transcription of subtelomere tandemly repetitive DNA in chicken embryogenesis

  • Original Article
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Transcription of tandemly repetitive DNA in embryogenesis seems to be of special interest due to a crucial role of non-coding RNAs in many aspects of development. However, only a few data are available on tandem repeats transcription at subtelomere regions of chromosomes during vertebrate embryogenesis. To reduce this gap, we examined stage and tissue-specific pattern of subtelomeric PO41 (pattern of 41 bp) tandem repeat transcription during embryogenesis of chicken (Gallus gallus domesticus). Using whole-mount RNA fluorescent in situ hybridization and reverse transcription PCR with specific primers, we demonstrated that both strands of PO41 repeat are transcribed at each of the studied stages of chicken embryo development: from 7–8 HH to 20 HH stages. Subtelomere-derived transcripts localize in the nuclei of all cell types and throughout the all embryonic bodies: head, somites, tail, wings and buds. In embryo-dividing cells and cultured embryonic fibroblasts, PO41 RNAs envelop terminal regions of chromosomes. PO41-containing RNAs are predominantly single-stranded and can be polyadenylated, indicating appearance of non-nascent form of subtelomeric transcripts. PO41 repeat RNAs represent a rare example of ubiquitously transcribed non-coding RNAs, such as Xist/XIST RNA or telomere repeat-containing RNA. Distribution of PO41 repeat transcripts at different stages of embryo development and among cell types has extremely uniform pattern, indicating on possible universal functions of PO41 non-coding RNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CEFs:

Chicken embryonic fibroblasts

HH:

Hamburger and Hamilton

DMEM:

Dulbecco’s modified Eagle’s medium

PO41:

Pattern of 41 bp

RNA FISH:

RNA fluorescent in situ hybridization

RT-PCR:

Reverse transcription polymerase chain reaction

WISH:

Whole-mount in situ hybridization

References

  • Byron M, Hall LL, Lawrence JB (2013) A multifaceted FISH approach to study endogenous RNAs and DNAs in native nuclear and cell structures. Curr Protoc Hum Genet 76:4.15.1–4.15.21

    Article  Google Scholar 

  • Clemson CM, McNeil JA, Willard HF, Lawrence JB (1996) XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear chromosome structure. J Cell Biol 132:259–275

    Article  CAS  PubMed  Google Scholar 

  • Darnell DK, Kaur S, Stanislaw S et al (2007) GEISHA: an in situ hybridization gene expression resource for the chicken embryo. Cytogenet Genome Res 117:30–35

    Article  CAS  PubMed  Google Scholar 

  • Deng Z, Wang Z, Xiang C et al (2012) Formation of telomeric repeat-containing RNA (TERRA) foci in highly proliferating mouse cerebellar neuronal progenitors and medulloblastoma. J Cell Sci 125:4383–4394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deryusheva S, Krasikova A, Kulikova T, Gaginskaya E (2007) Tandem 41-bp repeats in chicken and Japanese quail genomes: FISH mapping and transcription analysis on lampbrush chromosomes. Chromosoma 116:519–530

    Article  CAS  PubMed  Google Scholar 

  • Duthie SM, Nesterova TB, Formstone EJ et al (1999) Xist RNA exhibits a banded localization on the inactive X chromosome and is excluded from autosomal material in cis. Hum Mol Genet 8:195–204

    Article  CAS  PubMed  Google Scholar 

  • Enukashvily NI, Ponomartsev NV (2013) Mammalian satellite DNA: a speaking dumb. In: Donev R, eds. Organisation of chromosomes. Adv Protein Chem Struct Biol 90. Academic Press, pp 31–65

  • Enukashvily NI, Donev R, Waisertreiger IS, Podgornaya OI (2007) Human chromosome 1 satellite 3 DNA is decondensed, demethylated and transcribed in senescent cells and in A431 epithelial carcinoma cells. Cytogenet Genome Res 118:42–54

    Article  CAS  PubMed  Google Scholar 

  • Eymery А, Callanan М, Vourc’h С (2009a) The secret message of heterochromatin: new insights into the mechanisms and function of centromeric and pericentric repeat sequence transcription. Dev Biol 53:259–268

    CAS  Google Scholar 

  • Eymery A, Horard B, Atifi-Borel M et al (2009b) A transcriptomic analysis of human centromeric and pericentric sequences in normal and tumor cells. Nucleic Acids Res 37:6340–6354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fukagawa T, Nogami M, Yoshikawa M et al (2004) Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol 6:784–791

    Article  CAS  PubMed  Google Scholar 

  • Hall LL, Carone DM, Gomez AV et al (2014) Stable C0T-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell 156:907–919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hamburger V, Hamilton H (1951) A series of normal stages in the development of the chick embryo. Dev Dyn 195:231–272

    Article  Google Scholar 

  • Kuznetzova TV, Enukashvily NI, Trofimova IL, Gorbunova AV, Vashukova ES, Baranov VS (2012) Localisation and transcription of human chromosome 1 pericentromeric heterochromatin in embryonic and extraembryonic tissues. Med Genetics 11:19–24

    CAS  Google Scholar 

  • Lee H-R, Neumann P, Macas J, Jiang J (2006) Transcription and evolutionary dynamics of the centromeric satellite repeat CentO in rice. Mol Biol Evol 23:2505–2520

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Flores I, Garrido-Ramos MA (2012) The repetitive DNA content of eukaryotic genomes. In: Garrido-Ramos MA (ed) Genome Dynamics 7. Karger, Basel, pp 1–28

    Google Scholar 

  • Luke B, Lingner J (2009) TERRA: telomeric repeat-containing RNA. EMBO J 28:2503–2510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • May BP, Lippman ZB, Fang Y, Spector DL, Martienssen RA (2005) Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats. PLoS Genet 1:0705–0714

    Article  CAS  Google Scholar 

  • Pauli A, Rinn JL, Schier AF (2011) Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet 12:136–149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pizard A, Haramis A, Carrasco AE, Franco P, López S, Paganelli A (2004) Whole-mount in situ hybridization and detection of RNAs in vertebrate embryos and isolated organs. In: Ausubel FM (ed) Current Protocols in Molecular Biology. Greene Pub. Associates, Wiley-Interscience, New York, pp 14.9.1–14.9.24

    Google Scholar 

  • Probst AV, Almouzni G (2008) Pericentric heterochromatin: dynamic organization during early development in mammals. Differentiation 76:15–23

    Article  CAS  PubMed  Google Scholar 

  • Probst AV, Almouzni G (2011) Heterochromatin establishment in the context of genome-wide epigenetic reprogramming. Trends Genet 27:177–185

    Article  CAS  PubMed  Google Scholar 

  • Probst AV, Okamoto I, Casanova M, El Marjou F, Le Baccon P, Almouzni G (2010) A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev Cell 19:625–638

    Article  CAS  PubMed  Google Scholar 

  • Riethman H, Ambrosini A, Paul S (2005) Human subtelomere structure and variation. Chromosome Res 13:505–515

    Article  CAS  PubMed  Google Scholar 

  • Roeszler KN, Itman C, Sinclair AH, Smith CA (2012) The long non-coding RNA, MHM, plays a role in chicken embryonic development, including gonadogenesis. Dev Biol 366:317–326

    Article  CAS  PubMed  Google Scholar 

  • Rudert F, Bronner S, Garnier JM, Dolle P (1995) Transcripts from opposite strands of gamma satellite DNA are differentially expressed during mouse development. Mamm Genome 6:76–83

    Article  CAS  PubMed  Google Scholar 

  • Rychlik MP, Chon H, Cerritelli SM, Klimek P, Crouch RJ, Nowotny M (2010) Crystal structures of RNase H2 in complex with nucleic acid reveal the mechanism of RNA-DNA junction recognition and cleavage. Mol Cell 40:658–670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schoeftner S, Blasco MA (2008) Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10:228–236

    Article  CAS  PubMed  Google Scholar 

  • Shao P, Liaoa J-Y, Guana D-G et al (2012) Drastic expression change of transposon-derived piRNA-like RNAs and microRNAs in early stages of chicken embryos implies a role in gastrulation. RNA Biol 9:212–227

    Article  CAS  PubMed  Google Scholar 

  • Sone M, Hayashi T, Tarui H, Agata K, Takeichi M, Nakagawa S (2007) The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J Cell Sci 120:2498–2506

    Article  CAS  PubMed  Google Scholar 

  • Teranishi M, Shimada Y, Hori T et al (2001) Transcripts of the MHM region on the chicken Z chromosome accumulate as non-coding RNA in the nucleus of female cells adjacent to the DMRT1 locus. Chromosome Res 9:147–165

    Article  CAS  PubMed  Google Scholar 

  • Trofimova I, Popova D, Vasilevskaya E, Krasikova A (2014) Non-coding RNA derived from a conservative subtelomeric tandem repeat in chicken and Japanese quail somatic cells. Mol Cytogenet 7:1–13

    Article  Google Scholar 

  • Ugarkovic D (2005) Functional elements residing within satellite DNAs. EMBO Rep 6:1035–1039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vourc’h C, Biamonti G (2011) Transcription of satellite DNAs in mammals. In: Ugarkovic D (ed) Long non-coding RNAs, progress in molecular and subcellular biology. Springer-Verlag, New York, pp 95–118

    Google Scholar 

  • Wicker T, Robertson JS, Schulze SR et al (2005) The repetitive landscape of the chicken genome. Genome Res 15:126–136

    Article  PubMed Central  PubMed  Google Scholar 

  • Zheng R, Shen Z, Tripathi V et al (2010) Polypurine-repeat-containing RNAs: a novel class of long non-coding RNA in mammalian cells. J Cell Sci 123:3734–3744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Antonina Maslova (St. Petersburg State University, Russia) for chicken embryonic fibroblasts collection and cultivation. This research was supported by Russian Science Foundation (grant #14-14-00131). The work was partially performed using experimental equipment of the Research Resource Centers ‘Chromas’ and ‘Molecular and cell technologies’ of St Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alla Krasikova.

Additional information

Responsible Editors: Maria Assunta Biscotti, Pat Heslop-Harrison and Ettore Olmo

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 3367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trofimova, I., Chervyakova, D. & Krasikova, A. Transcription of subtelomere tandemly repetitive DNA in chicken embryogenesis. Chromosome Res 23, 495–503 (2015). https://doi.org/10.1007/s10577-015-9487-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-015-9487-3

Keywords

Navigation