Skip to main content

Advertisement

Log in

Illegitimate recombination between T cell receptor genes in humans and pigs (Sus scrofa domestica)

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

T cell receptor (TCR) genes (TRA/TRD, TRB and TRG) reside in three regions on human chromosomes (14q11.2, 7q34 and 7p14, respectively) and pig chromosomes (7q15.3-q21, 18q11.3-q12 and 9q21-22, respectively). During the maturation of T cells, TCR genes are rearranged by site-specific recombination. Occasionally, interlocus recombination of different TCR genes takes place, resulting in chromosome rearrangements. It has been suggested that the absolute number of these “innocent” trans-rearrangements correlates with the risk of lymphoma. The aims of this work were to assess the frequencies of rearrangements with breakpoints in TCR genes in domestic pig lymphocytes and to compare these with the frequencies of corresponding rearrangements in human lymphocytes by using fluorescence in situ hybridization with chromosome painting probes. We show that frequencies of trans-rearrangements involving TRA/TRD locus in pigs are significantly higher than the frequency of translocations with breakpoints in TRB and TRG genes in pigs and the frequencies of corresponding trans-rearrangements involving TRA/TRD locus in humans. Complex structure of the pig TRA/TRD locus with high number of potential V(D)J rearrangements compared to the human locus may account for the observed differences. Furthermore, we demonstrated that trans-rearrangements involving pig TRA/TRD locus occur at lower frequencies in γδ T cells than in αβ T lymphocytes. The decrease of the frequencies in γδ T cells is probably caused by the absence of TRA recombination during maturation of this T cell lineage. High numbers of innocent trans-rearrangements in pigs may indicate a higher risk of T-cell lymphoma than in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BAC:

Bacterial artificial chromosome

FISH:

Fluorescence in situ hybridization

PBL:

Peripheral blood lymphocyte

PBMC:

Peripheral blood mononuclear cells

PHA:

Phytohaemagglutinin

PWM:

Pokeweed mitogen

TRA :

T cell receptor alpha locus

TRB :

T cell receptor beta locus

TRD :

T cell receptor delta locus

TRG :

T cell receptor gamma locus

TCR:

T cell receptor

VDJ:

Variable, diversity and joining

References

  • Abdallah JM, Lombardi DP, Kirsch IR (1995) Genetic instability in patients with Hodgkin’s disease undergoing chemotherapy. J Clin Invest 96:2744–2747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Allam A, Kabelitz D (2006) TCR trans-rearrangements: biological significance in antigen recognition vs the role as lymphoma biomarker. J Immunol 176:5707–5712

    Article  CAS  PubMed  Google Scholar 

  • Antonacci R, Lanave C, Del Faro L, Vaccarelli G, Ciccarese S, Massari S (2005) Artiodactyl emergence is accompanied by the birth of an extensive pool of diverse germline TRDV1 genes. Immunogenetics 57:254–266

    Article  CAS  PubMed  Google Scholar 

  • Antonacci R, Di Tommaso S, Lanave C, Cribiu EP, Ciccarese S, Massari S (2008) Organization, structure and evolution of 41kb of genomic DNA spanning the D-J-C region of the sheep TRB locus. Mol Immunol 45:493–509

    Article  CAS  PubMed  Google Scholar 

  • Ballinger SW, Judice SA, Nicklas JA, Albertini RJ, O’Neill JP (2002) DNA sequence analysis of interlocus recombination between the human T-cell receptor gamma variable (GV) and beta diversity-joining (BD/BJ) sequences on chromosome 7 (inversion 7). Environ Mol Mutagen 40:85–92

    Article  CAS  PubMed  Google Scholar 

  • Boehm T, Rabbitts TH (1989) The human T cell receptor genes are targets for chromosomal abnormalities in T cell tumors. FASEB J 3:2344–2359

    CAS  PubMed  Google Scholar 

  • Bowen S, Wangsa D, Ried T, Livak F, Hodes RJ (2013) Concurrent V(D)J recombination and DNA end instability increase interchromosomal trans-rearrangements in ATM-deficient thymocytes. Nucleic Acids Res 41:4535–4548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Capone M, Hockett RD, Zlotnik A (1998) Kinetics of T cell receptor beta, gamma, and delta rearrangements during adult thymic development: T cell receptor rearrangements are present in CD44(+)CD25(+) Pro-T thymocytes. Proc Natl Acad Sci U S A 95:12522–12527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Connelley T, Aerts J, Law A, Morrison WI (2009) Genomic analysis reveals extensive gene duplication within the bovine TRB locus. BMC Genomics 10:192

    Article  PubMed Central  PubMed  Google Scholar 

  • Conrad ML, Pettman R, Whitehead J, McKinnel L, Davis SK, Koop BF (2002) Genomic sequencing of the bovine T cell receptor beta locus. Vet Immunol Immunopathol 87:439–441

    Article  CAS  PubMed  Google Scholar 

  • Davodeau F, Peyrat MA, Gaschet J, Hallet MM, Triebel F, Vié H et al (1994) Surface expression of functional T cell receptor chains formed by interlocus recombination on human T lymphocytes. J Exp Med 180:1685–1691

    Article  CAS  PubMed  Google Scholar 

  • Eguchi-Ogawa T, Toki D, Uenishi H (2009) Genomic structure of the whole D-J-C clusters and the upstream region coding V segments of the TRB locus in pig. Dev Comp Immunol 33:1111–1119

    Article  CAS  PubMed  Google Scholar 

  • Goureau A, Yerle M, Schmitz A, Riquet J, Milan D, Pinton P et al (1996) Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genomics 36:252–262

    Article  CAS  PubMed  Google Scholar 

  • Hecht F, Hecht BK (1990) Cancer in ataxia-telangiectasia patients. Cancer Genet Cytogenet 46:9–19

    Article  CAS  PubMed  Google Scholar 

  • Hecht F, Hecht BK, Kirsch IR (1987) Fragile sites limited to lymphocytes: molecular recombination and malignancy. Cancer Genet Cytogenet 26:95–104

    Article  CAS  PubMed  Google Scholar 

  • Hein WR, Mackay CR (1991) Prominence of gamma-delta T-cells in the ruminant immune system. Immunol Today 12:30–34

    Article  CAS  PubMed  Google Scholar 

  • Herzig CT, Lefranc MP, Baldwin CL (2010) Annotation and classification of the bovine T cell receptor delta genes. BMC Genomics 11:100

    Article  PubMed Central  PubMed  Google Scholar 

  • Hinz T, Allam A, Wesch D, Schindler D, Kabelitz D (2000) Cell-surface expression of transrearranged Vgamma-cbeta T-cell receptor chains in healthy donors and in ataxia telangiectasia patients. Br J Haematol 109:201–210

    Article  CAS  PubMed  Google Scholar 

  • Hiraiwa H, Uenishi H, Kiuchi S, Watanabe M, Takagaki Y, Yasue H (2001) Assignment of T cell receptor (TCR) alpha-chain gene (A), beta-chain gene (B), gamma-chain gene (G), and delta-chain gene (D) loci on swine chromosomes by in situ hybridization and radiation hybrid mapping. Cytogenet Cell Genet 93:94–99

    Article  CAS  PubMed  Google Scholar 

  • Huang CY, Sharma GG, Walker LM, Bassing CH, Pandita TK, Sleckman BP (2007) Defects in coding joint formation in vivo in developing ATM-deficient B and T lymphocytes. J Exp Med 204:1371–1381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobs RM, Messick JB, Valli VE (2002) Tumors of the hemolymphatic system. In: Meuten DJ (ed) Tumors in domestic animals. A Blackwell Publishing Company, Iowa, pp 119–198

    Chapter  Google Scholar 

  • Kirsch IR (1994) V(D)J recombination and ataxia-telangiectasia, a review. Int J Radiat Biol 66:97–108

    Article  Google Scholar 

  • Kirsch IR (1997) Trans-rearrangements and the risk of lymphoid malignancy. Ann Oncol 8:45–48

    Article  PubMed  Google Scholar 

  • Kobayashi Y, Tycko B, Soreng AL, Sklar J (1991) Transrearrangements between antigen receptor genes in normal human lymphoid tissues and in ataxia telangiectasia. J Immunol 147:3201–3209

    CAS  PubMed  Google Scholar 

  • Kojis TL, Gatti RA, Sparkes RS (1991) The cytogenetics of ataxia telangiectasia. Cancer Genet Cytogenet 56:143–156

    Article  CAS  PubMed  Google Scholar 

  • Korsmeyer SJ (1992) Chromosomal translocations in lymphoid malignancies reveal novel proto-oncogenes. Annu Rev Immunol 10:785–807

    Article  CAS  PubMed  Google Scholar 

  • Kubickova S, Cernohorska H, Musilova P, Rubes J (2002) The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. Chromosome Res 10:571–577

    Article  CAS  PubMed  Google Scholar 

  • Kuzmuk KN, Schook LB (2011) Pigs as a model for biomedical sciences. In: Rothschild MF, Ruvinsky A (eds) The genetics of the pig. CAB International, Wallingford, pp 426–444

    Chapter  Google Scholar 

  • Larmonie NS, Dik WA, Meijerink JP, Homminga I, van Dongen JJ, Langerak AW (2013) Breakpoint sites disclose the role of the V(D)J recombination machinery in the formation of T-cell receptor (TCR) and non-TCR associated aberrations in T-cell acute lymphoblastic leukemia. Haematologica 98:1173–1184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lipkowitz S, Stern MH, Kirsch IR (1990) Hybrid T cell receptor genes formed by interlocus recombination in normal and ataxia-telangiectasis lymphocytes. J Exp Med 172:409–418

    Article  CAS  PubMed  Google Scholar 

  • Lipkowitz S, Garry VF, Kirsch IR (1992) Interlocus V-J recombination measures genomic instability in agriculture workers at risk for lymphoid malignancies. Proc Natl Acad Sci U S A 89:5301–5305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lista F, Bertness V, Guidos CJ, Danska JS, Kirsch IR (1997) The absolute number of trans-rearrangements between the TCRG and TCRB loci is predictive of lymphoma risk: a severe combined immune deficiency (SCID) murine model. Cancer Res 57:4408–4413

    CAS  PubMed  Google Scholar 

  • Lopes LF, Dias Neto E, Lorand-Metze I, Latorre MR, Simpson AJ (2001) Analysis of Vgamma/Jbeta trans-rearrangements in paediatric patients undergoing chemotherapy. Br J Haematol 113:1001–1008

    Article  CAS  PubMed  Google Scholar 

  • Lopes LF, Piccoli Fde S, Paixão VA, Latorre Mdo R, Bd C, Simpson AJ, Caballero OL (2004) Association of CYP3A4 genotype with detection of Vgamma/Jbeta trans-rearrangements in the peripheral blood leukocytes of pediatric cancer patients undergoing chemotherapy for ALL. Leuk Res 28:1281–1286

    Article  CAS  PubMed  Google Scholar 

  • Marculescu R, Vanura K, Montpellier B, Roulland S, Le T, Navarro JM, Jäger U, McBlane F, Nadel B (2006) Recombinase, chromosomal translocations and lymphoid neoplasia: targeting mistakes and repair failures. DNA Repair 5:1246–1258

    Article  CAS  PubMed  Google Scholar 

  • Meydan D, Nilsson T, Tornblom M, Hagmar L, Hellgren D, Fuscoe JC et al (1999) The frequency of illegitimate TCRbeta/gamma gene recombination in human lymphocytes: influence of age, environmental exposure and cytostatic treatment, and correlation with frequencies of t(14;18) and hprt mutation. Mutat Res 444:393–403

    Article  CAS  PubMed  Google Scholar 

  • Misdorp W (2003) Congenital and hereditary tumours in domestic animals. 2. Pigs. A review. Vet Q 25:17–30

    Article  CAS  PubMed  Google Scholar 

  • Musilova P, Kubickova S, Zrnova E, Horin P, Vahala J, Rubes J (2007) Karyotypic relationships among Equus grevyi, Equus burchelli and domestic horse defined using horse chromosome arm-specific probes. Chromosome Res 15:807–813

    Article  CAS  PubMed  Google Scholar 

  • Ogihara K, Ohba T, Takai H, Ishikawa Y, Kadota K (2012) Lymphoid neoplasms in swine. J Vet Med Sci 74:149–154

    Article  PubMed  Google Scholar 

  • Peterson RD, Funkhouser JD, Tuck-Muller CM, Gatti RA (1992) Cancer susceptibility in ataxia-telangiectasia. Leukemia 6:8–13

    PubMed  Google Scholar 

  • Prieur M, Al Achkar W, Aurias A, Couturier J, Dutrillaux AM, Dutrillaux B et al (1988) Acquired chromosome rearrangements in human lymphocytes: effect of aging. Hum Genet 79:147–150

    Article  CAS  PubMed  Google Scholar 

  • Taalman RD, Hustinx TW, Weemaes CM, Seemanova E, Schmidt A, Passarge E et al (1989) Further delineation of the Nijmegen breakage syndrome. Am J Med Genet 32:425–431

    Article  CAS  PubMed  Google Scholar 

  • Tanimoto T, Ohtsuki Y (1998) T-cell-rich B-cell lymphoma in a pig. Vet Pathol 35:147–149

    Article  CAS  PubMed  Google Scholar 

  • Tawn EJ (1988) The non-random occurrence of exchanges involving chromosomes 7 and 14 in human lymphocytes: a prospective study of control individuals. Mutat Res 199:215–220

    Article  CAS  PubMed  Google Scholar 

  • Tycko B, Palmer JD, Sklar J (1989) T cell receptor gene trans-rearrangements: chimeric gamma-delta genes in normal lymphoid tissues. Science 245:1242–1246

    Article  CAS  PubMed  Google Scholar 

  • Uenishi H, Eguchi-Ogawa T, Toki D, Morozumi T, Tanaka-Matsuda M, Shinkai H et al (2009) Genomic sequence encoding diversity segments of the pig TCR delta chain gene demonstrates productivity of highly diversified repertoire. Mol Immunol 46:1212–1221

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Parkhouse RM (1996) Phenotypic classification of porcine lymphocyte subpopulations in blood and lymphoid tissues. Immunology 89:76–83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of the Czech Republic, project P502/12/1966, and the Central European Institute of Technology (ED1.1.00/02.0068) via the European Regional Development Fund. We would like to thank Lenka Leva for her technical help and Thuraya Awadova for her assistance with statistical analysis.

Conflict of interest

Petra Musilova, Jitka Drbalova, Svatava Kubickova, Halina Cernohorska, Hana Stepanova and Jiri Rubes declare that they have no conflict of interest.

Ethical standards

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study. All institutional and national guidelines for the care and use of laboratory animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Musilova.

Additional information

Responsible Editor: Matthew Breen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(PDF 13 kb)

Supplementary Table 2

(PDF 22 kb)

Supplementary Table 3

(PDF 83 kb)

Supplementary Table 4

(PDF 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musilova, P., Drbalova, J., Kubickova, S. et al. Illegitimate recombination between T cell receptor genes in humans and pigs (Sus scrofa domestica). Chromosome Res 22, 483–493 (2014). https://doi.org/10.1007/s10577-014-9434-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-014-9434-8

Keywords

Navigation