Skip to main content
Log in

Reliable detection of epigenetic histone marks and nuclear proteins in tissue cryosections

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Nuclear processes in real tissues often are significantly different from those in cultured cells. However, immunostaining on tissue sections needs long fixation which masks antigens and, respectively, antigen retrieval which restores antigen accessibility. These treatments affect the immunostaining results and complicate their interpretation. The problem is especially significant for nuclear antigens which often are very sensitive to both fixation and antigen retrieval. We targeted this problem by a study of several histone modifications and nuclear proteins in tissue sections of mouse retina which contains cells with both conventional and unique inverted nuclei. In the latter, the main chromatin classes form separate concentric shells which simplifies evaluation of the signal distribution. We show that as a rule, longer fixation demands longer antigen retrieval time. Nevertheless, antigens are remarkably diverse in this respect and need individual adjustment. We suggest a robust procedure for immunostaining on sections, that is, a method that allows controlling the differences in immunostaining caused by differences in fixation time and antigen retrieval duration, so that immunostaining protocol can be quickly optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AR:

Antigen retrieval

DAPI:

4′,6-Diamidino-2-phenylindole

GCL:

Ganglion cell layer

H3K4me2:

Di-methylated lysine 4 of histone H3

H3K36me3:

Tri-methylated lysine 36 of histone H3

H3K27me3:

Tri-methylated lysine 27 of histone H3

H4K8ac:

Acetylated lysine 8 of histone H4

H4K20me2:

Di-methylated lysine 20 of histone H4

HP1:

Heterochromatin protein 1

INL:

Inner nuclear layer

ONL:

Outer nuclear layer

PBS:

Phosphate-buffered saline

RNA Pol-II CTD:

Non-phosphorilated carboxy-terminal domain of RNA polymerase II

RNA Pol-II Ser2ph:

Phosphorylated serine 2 of heptapeptide repeat on carboxy-terminal domain of RNA polymerase II

RT:

Room temperature

References

  • Boyle AL, Ballard SG, Ward DC (1990) Differential distribution of long and short interspersed element sequences in the mouse genome: chromosome karyotyping by fluorescence in situ hybridization. Proc Natl Acad Sci U S A 87:7757–7761

    Article  PubMed  CAS  Google Scholar 

  • Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, Bickmore WA (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 10:211–219

    Article  PubMed  CAS  Google Scholar 

  • Bridger JM, Boyle S, Kill IR, Bickmore WA (2000) Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr Biol 10:149–152

    Article  PubMed  CAS  Google Scholar 

  • Chandra T, Kirschner K, Thuret JY, Pope BD, Ryba T, Newman S, Ahmed K, Samarajiwa SA, Salama R, Carroll T, Stark R, Janky R, Narita M, Xue L, Chicas A, Nunez S, Janknecht R, Hayashi-Takanaka Y, Wilson MD, Marshall A, Odom DT, Babu MM, Bazett-Jones DP, Tavare S, Edwards PA, Lowe SW, Kimura H, Gilbert DM, Narita M (2012) Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation. Mol Cell 47:203–214

    Article  PubMed  CAS  Google Scholar 

  • Cremer M, von Hase J, Volm T, Brero A, Kreth G, Walter J, Fischer C, Solovei I, Cremer C, Cremer T (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosom Res 9:541–567

    Article  CAS  Google Scholar 

  • Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145:1119–1131

    Article  PubMed  CAS  Google Scholar 

  • Dostie J, Bickmore WA (2012) Chromosome organization in the nucleus—charting new territory across the Hi-Cs. Curr Opin Genet Dev 22:125–131

    Article  PubMed  CAS  Google Scholar 

  • Egelhofer TA, Minoda A, Klugman S, Lee K, Kolasinska-Zwierz P, Alekseyenko AA, Cheung MS, Day DS, Gadel S, Gorchakov AA, Gu T, Kharchenko PV, Kuan S, Latorre I, Linder-Basso D, Luu Y, Ngo Q, Perry M, Rechtsteiner A, Riddle NC, Schwartz YB, Shanower GA, Vielle A, Ahringer J, Elgin SC, Kuroda MI, Pirrotta V, Ren B, Strome S, Park PJ, Karpen GH, Hawkins RD, Lieb JD (2011) An assessment of histone-modification antibody quality. Nat Struct Mol Biol 18:91–93

    Article  PubMed  CAS  Google Scholar 

  • Habermann FA, Cremer M, Walter J, Kreth G, von Hase J, Bauer K, Wienberg J, Cremer C, Cremer T, Solovei I (2001) Arrangements of macro- and microchromosomes in chicken cells. Chromosom Res 9:569–584

    Article  CAS  Google Scholar 

  • Hayashi-Takanaka Y, Yamagata K, Wakayama T, Stasevich TJ, Kainuma T, Tsurimoto T, Tachibana M, Shinkai Y, Kurumizaka H, Nozaki N, Kimura H (2011) Tracking epigenetic histone modifications in single cells using Fab-based live endogenous modification labeling. Nucleic Acids Res 39:6475–6488

    Article  PubMed  CAS  Google Scholar 

  • Joffe B, Leonhardt H, Solovei I (2010) Differentiation and large scale spatial organization of the genome. Curr Opin Genet Dev 20:562–569

    Article  PubMed  CAS  Google Scholar 

  • Kiernan JA (2008) Histological and histochemical methods: theory and practice. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Kimura H, Hayashi-Takanaka Y, Goto Y, Takizawa N, Nozaki N (2008) The organization of histone H3 modifications as revealed by a panel of specific monoclonal antibodies. Cell Struct Funct 33:61–73

    Article  PubMed  CAS  Google Scholar 

  • Korenberg JR, Rykowski MC (1988) Human genome organization: alu, lines, and the molecular structure of metaphase chromosome bands. Cell 53:391–400

    Article  PubMed  CAS  Google Scholar 

  • Melan MA, Sluder G (1992) Redistribution and differential extraction of soluble proteins in permeabilized cultured cells. Implications for immunofluorescence microscopy. J Cell Sci 101:731–743

    PubMed  Google Scholar 

  • Osborn M, Brandfass S (2004) Immunocytochemistry of frozen and of paraffin tissue sections. In: Celis J (ed) Cell biology handbook: a laboratory manual, 3rth edn. Academic Press, NYP, San Diego, pp 563–569

    Google Scholar 

  • Parada LA, McQueen PG, Misteli T (2004) Tissue-specific spatial organization of genomes. Genome Biol 5:R44

    Article  PubMed  Google Scholar 

  • Ronneberger O, Baddeley D, Scheipl F, Verveer PJ, Burkhardt H, Cremer C, Fahrmeir L, Cremer T, Joffe B (2008) Spatial quantitative analysis of fluorescently labeled nuclear structures: problems, methods, pitfalls. Chromosom Res 16:523–562

    Article  CAS  Google Scholar 

  • Shi SR, Chaiwun B, Young L, Cote RJ, Taylor CR (1993) Antigen retrieval technique utilizing citrate buffer or urea solution for immunohistochemical demonstration of androgen receptor in formalin-fixed paraffin sections. J Histochem Cytochem 41:1599–1604

    Article  PubMed  CAS  Google Scholar 

  • Shi SR, Cote RJ, Taylor CR (1997) Antigen retrieval immunohistochemistry: past, present, and future. J Histochem Cytochem 45:327–343

    Article  PubMed  CAS  Google Scholar 

  • Shi SR, Cote RJ, Taylor CR (2001) Antigen retrieval techniques: current perspectives. J Histochem Cytochem 49:931–937

    Article  PubMed  CAS  Google Scholar 

  • Solovei I (2010) Fluorescence in situ hybridization (FISH) on tissue cryosections. Methods Mol Biol 659:71–82

    Article  PubMed  CAS  Google Scholar 

  • Solovei I, Kreysing M, Lanctot C, Kosem S, Peichl L, Cremer T, Guck J, Joffe B (2009) Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137:356–368

    Article  PubMed  CAS  Google Scholar 

  • Terrenoire E, McRonald F, Halsall JA, Page P, Illingworth RS, Taylor AM, Davison V, O’Neill LP, Turner BM (2010) Immunostaining of modified histones defines high-level features of the human metaphase epigenome. Genome Biol 11:R110

    Article  PubMed  CAS  Google Scholar 

  • van Noorden CJF, Frederiks WM (1993) Enzyme histochemistry: a laboratory manual of current methods. Oxford University Press, New York

    Google Scholar 

  • Walter J, Joffe B, Bolzer A, Albiez H, Benedetti PA, Muller S, Speicher MR, Cremer T, Cremer M, Solovei I (2006) Towards many colors in FISH on 3D-preserved interphase nuclei. Cytogenet Genome Res 114:367–378

    Article  PubMed  CAS  Google Scholar 

  • Williamson I, Eskeland R, Lettice LA, Hill AE, Boyle S, Grimes GR, Hill RE, Bickmore WA (2012) Anterior-posterior differences in HoxD chromatin topology in limb development. Development 139:3157–3167

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the German Research Foundation (DFG) SO1054/1 to IS, JO903/1 to BJ, SFB/TR5 to HL, and by grants-in-aid from the MEXT of Japan to HK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Solovei.

Additional information

Responsible Editor: Conly Rieder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eberhart, A., Kimura, H., Leonhardt, H. et al. Reliable detection of epigenetic histone marks and nuclear proteins in tissue cryosections. Chromosome Res 20, 849–858 (2012). https://doi.org/10.1007/s10577-012-9318-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-012-9318-8

Keywords

Navigation