Skip to main content
Log in

Tackling the characterization of canine chromosomal breakpoints with an integrated in-situ/in-silico approach: The canine PAR and PAB

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The domestic dog continues to represent an influential model organism for comparative biomedical research owing to the numerous genetic and pathophysiological similarities shared between human and dog diseases. The combined availability of a high-quality genome assembly and a 1 Mb-resolution genome-assembly integrated bacterial artificial chromosome (BAC) panel now provides the essential resources to combine cytogenetic and computational analyses to determine the precise locations of chromosome breakpoint regions within aberrant karyotypes. In this study we demonstrate the synergy of using a such a combined in-situ/in-silico approach to define chromosome breakpoints using the naturally occurring breakpoint present on all canine X chromosomes—the pseudoautosomal breakpoint (PAB). In so doing we have further characterized the canine pseudoautosomal region (PAR) to extend approximately 6.6 Mb from the telomeric end of CFA Xp and established that the canine PAB is contained within a 2 kb region. Our characterization of the canine PAR allowed for the comparative study of gene content across previously defined mammalian PARs and indicates that the canine PAB is contained with the gene Shroom2. The future application of the approach demonstrated in this study will prove useful when seeking to identify the genomic sequences surrounding recurrent chromosome breakpoints present in canine cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

aCGH:

array-based comparative genome hybridization

BAC:

bacterial artificial chromosome

BLAST:

Basic Local Alignment and Search Tool

BLASTn:

Basic Local Alignment and Search Tool for nucleotides

CFA:

Canis familiaris

CHORI-82:

Children’s Hospital Oakland Research Institute – 82 dog BAC library

FISH:

fluorescence in-situ hybridization

HAS:

Homo sapiens

PAB:

pseudoautosomal boundary

PAR:

pseudoautosomal region

RPCI-81:

Roswell Park Cancer Institute – 81 dog BAC library

UCSC:

University of California, Santa Cruz

References

  • Altschul SF, Madden TL, Schaffer AA et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  • Blaschke RJ, Rappold G (2006) The pseudoautosomal regions, SHOX and disease. Curr Opin Genet Dev 16: 233–239.

    Article  PubMed  CAS  Google Scholar 

  • Breen M (2008) Canine cytogenetics–from band to basepair. Cytogenet Genome Res 120: 50–60.

    Article  PubMed  CAS  Google Scholar 

  • Breen M, Langford CF, Carter NP et al. (1999) Fish mapping and identification of canine chromosomes. J Hered 90: 27–30.

    Article  PubMed  CAS  Google Scholar 

  • Breen M, Hitte C, Lorentzen TD et al. (2004) An integrated 4249 marker FISH/RH map of the canine genome. BMC Genomics 5: 65.

    Article  PubMed  Google Scholar 

  • Bussell JJ, Pearson NM, Kanda R, Filatov DA, Lahn BT (2006) Human polymorphism and human–chimpanzee divergence in pseudoautosomal region correlate with local recombination rate. Gene 368: 94–100.

    Article  PubMed  CAS  Google Scholar 

  • Chowdhary BP, Raudsepp T (2008) The horse genome derby: racing from map to whole genome sequence. Chromosome Res 16: 109–127.

    Article  PubMed  CAS  Google Scholar 

  • Ellis N, Goodfellow PN (1989) The mammalian pseudoautosomal region. Trends Genet 5: 406–410.

    Article  PubMed  CAS  Google Scholar 

  • Ellis NA, Tippett P, Petty A et al. (1994a) PBDX is the XG blood group gene. Nat Genet 8: 285–290.

    Article  PubMed  CAS  Google Scholar 

  • Ellis NA, Ye TZ, Patton S et al. (1994b) Cloning of PBDX, an MIC2-related gene that spans the pseudoautosomal boundary on chromosome Xp. Nat Genet 6: 394–400.

    Article  PubMed  CAS  Google Scholar 

  • Filatov DA, Gerrard DT (2003) High mutation rates in human and ape pseudoautosomal genes. Gene 317: 67–77.

    Article  PubMed  CAS  Google Scholar 

  • Iwase M, Satta Y, Hirai Y, Hirai H, Imai H, Takahata N (2003) The amelogenin loci span an ancient pseudoautosomal boundary in diverse mammalian species. Proc Natl Acad Sci U S A 100: 5258–5263.

    Article  PubMed  CAS  Google Scholar 

  • Iwase M, Kaneko S, Kim H, Satta Y, Takahata N (2007) Evolutionary history of sex-linked mammalian amelogenin genes. Cells Tissues Organs 186: 49–59.

    Article  PubMed  Google Scholar 

  • Kirkness EF, Bafna V, Halpern AL et al. (2003) The dog genome: Survey sequencing and comparative analysis. Science 301: 1898–1903.

    Article  PubMed  Google Scholar 

  • Langford CF, Fischer PE, Binns MM, Holmes NG, Carter NP (1996) Chromosome-specific paints from a high-resolution flow karyotype of the dog. Chromosome Res 4: 115–123.

    Article  PubMed  CAS  Google Scholar 

  • Lindblad-Toh K, Wade CM, Mikkelsen TS et al. (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438: 803–819.

    Article  PubMed  CAS  Google Scholar 

  • Mangs AH, Morris BJ (2007) The human pseudoautosomal region (PAR): Origin, function and future. Current Genomics 8: 129–136.

    Article  CAS  Google Scholar 

  • Murphy WJ, Davis B, David VA et al. (2007) A 1.5- Mb-resolution radiation hybrid map of the cat genome and comparative analysis with the canine and human genomes. Genomics 89: 189–196.

    Article  PubMed  CAS  Google Scholar 

  • Park SH, Shin YK, Suh YH et al. (2005) Rapid divergency of rodent CD99 orthologs: implications for the evolution of the pseudoautosomal region. Gene 353: 177–188.

    Article  PubMed  CAS  Google Scholar 

  • Perry J, Palmer S, Gabriel A, Ashworth A (2001) A short pseudoautosomal region in laboratory mice. Genome Res 11: 1826–1832.

    PubMed  CAS  Google Scholar 

  • Raudsepp T, Chowdhary BP (2008) The horse pseudoautosomal region (PAR): characterization and comparison with the human, chimp and mouse PARs. Cytogenet Genome Res 121: 102–109.

    Article  PubMed  CAS  Google Scholar 

  • Roberto R, Capozzi O, Wilson RK et al. (2007) Molecular refinement of gibbon genome rearrangements. Genome Res 17: 249–257.

    Article  PubMed  CAS  Google Scholar 

  • Spriggs HF, Holmes NG, Breen MG et al. (2003) Construction and integration of radiation-hybrid and cytogenetic maps of dog chromosome X. Mamm Genome 14: 214–221.

    Article  PubMed  CAS  Google Scholar 

  • Strachan TR, Andrew P (2004) The human X and Y chromosomes exhibit substantial regions of sequence homology, including pseudoautosomal regions. In: Kingston F, ed. Human Molecular Genetics 3. New York: Garland, pp. 367–368.

    Google Scholar 

  • Thomas R, Scott A, Langford CF et al. (2005) Construction of a 2- Mb resolution BAC microarray for CGH analysis of canine tumors. Genome Res 15: 1831–1837.

    Article  PubMed  CAS  Google Scholar 

  • Thomas R, Duke SE, Bloom SK et al. (2007) A cytogenetically characterized, genome-anchored 10- Mb BAC set and CGH array for the domestic dog. J Hered 98: 474–484.

    Article  PubMed  CAS  Google Scholar 

  • Thomas R, Duke SE, Karlsson E et al. (2008) Development of a 1 Mb resolution genome integrated canine BAC resource—application for cytogenetic analysis and array based comparative genomic hybridization. Cytogenet Genome Res (in press).

  • Toder R, Glaser B, Schiebel K et al. (1997) Genes located in and near the human pseudoautosomal region are located in the X–Y pairing region in dog and sheep. Chromosome Res 5: 301–306.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Breen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, A.C., Kirkness, E.F. & Breen, M. Tackling the characterization of canine chromosomal breakpoints with an integrated in-situ/in-silico approach: The canine PAR and PAB. Chromosome Res 16, 1193–1202 (2008). https://doi.org/10.1007/s10577-008-1268-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-008-1268-9

Key words

Navigation