Skip to main content
Log in

The nuclear organization of Polycomb/Trithorax group response elements in larval tissues of Drosophila melanogaster

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

We analysed the nuclear organization of the Polycomb/Trithorax group response element (PRE/TRE) Fab-7 and of other PRE/TREs in larval tissues of D. melanogaster. The results show that pairing/clustering of transgenic and endogenous Fab-7 elements and of other endogenous PRE/TREs occurs only to a limited degree in a highly locus-specific and tissue-specific manner. However, transgenic Fab-7 elements as well as the Fab-7-regulated Abd-B gene and other endogenous loci preferentially occupied defined nuclear regions. Preferred association with the nuclear periphery was observed in the inactive state. However, also in the active state, Fab-7 was often found associated with the nuclear periphery as well as with the boundary of heterochromatin in a fly line- and tissue-specific manner. The boundary between heterochromatin and euchromatin revealed a highly complex architecture in the three-dimensional nuclear space with a close juxtaposition of active and repressed domains. The results suggest that such complex architectures create nuclear microenvironments sustaining specific states of activity of defined PRE/TREs. However, the data also show that the positional behaviour of the transgenic Fab-7 element does not apply to PRE/TREs in general. Altogether, this finding and the highly locus-, tissue-, and fly line-specific behaviour with regard to nuclear positioning and pairing/clustering suggest that the relationships between nuclear organization and functional regulation of PRE/TREs are highly complex and that simple models making general predictions might not be appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrulis ED, Neimann AM, Zappulla DC, Sternglanz R (1998) Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394: 592–595.

    Article  CAS  PubMed  Google Scholar 

  • Bantignies F, Grimaud C, Lavrov S, Gabut M, Cavalli G (2003) Inheritance of Polycomb-dependent chromosomal interactions in Drosophila. Genes Dev 17: 2406–2420.

    Article  CAS  PubMed  Google Scholar 

  • Beisel C, Imhof A, Greene J, Kremmer E, Sauer F (2002) Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature 419: 857–862.

    Article  CAS  PubMed  Google Scholar 

  • Bienz M, Muller J (1995) Transcriptional silencing of homeotic genes in Drosophila. Bioessays 17: 775–784.

    Article  CAS  PubMed  Google Scholar 

  • Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG (1997) Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91: 845–854.

    Article  CAS  PubMed  Google Scholar 

  • Buchenau P, Hodgson J, Strutt H, Arndt-Jovin DJ (1998) The distribution of polycomb-group proteins during cell division and development in Drosophila embryos: impact on models for silencing. J Cell Biol 141: 469–481.

    Article  CAS  PubMed  Google Scholar 

  • Byrd KN, Shearn A (2003) ASH1, a Drosophila trithorax group protein, is required for methylation of lysine 4 resudues on histone H3. Proc Natl Acad Sci U S A 100: 11535–11540.

    Article  CAS  PubMed  Google Scholar 

  • Cabal GG, Genovesio A, Rodriguez-Navarro S et al. (2006) SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441: 770–773.

    Article  CAS  PubMed  Google Scholar 

  • Campbell S, Inamdar M, Rodrigues V, Raghavan V, Palazzolo M, Chovnick A (1992) The scalloped gene encodes a novel, evolutionarily conserved transcription factor required for sensory organ differentiation in Drosophila. Genes Dev 6: 367–379.

    Article  CAS  PubMed  Google Scholar 

  • Cao R, Wang L, Wang H et al. (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298: 1039–1043.

    Article  CAS  PubMed  Google Scholar 

  • Casolari JM, Brown CR, Komili S, West J, Hieronymus H, Silver PA (2004) Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117: 427–439.

    Article  CAS  PubMed  Google Scholar 

  • Casolari JM, Brown CR, Drubin DA, Rando OJ, Silver PA (2005) Developmentally induced changes in transcriptional program alter spatial organization across chromosomes. Genes Dev 19: 1188–1198.

    Article  CAS  PubMed  Google Scholar 

  • Cavalli G (2006) Chromatin and epigenetics in development: blending cellular memory with cell fate plasticity. Development 133: 2089–2094.

    Article  CAS  PubMed  Google Scholar 

  • Cavalli G, Paro R (1998) The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell 93: 505–518.

    Article  CAS  PubMed  Google Scholar 

  • Chan CS, Rastelli L, Pirrotta V (1994) A Polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. EMBO J 13: 2553–2564.

    CAS  PubMed  Google Scholar 

  • Chiang A, O’Connor MB, Paro R, Simon J, Bender W (1995) Discrete Polycomb-binding sites in each parasegmental domain of the bithorax complex. Development 121: 1681–1689.

    CAS  PubMed  Google Scholar 

  • Chinwalla V, Jane EP, Harte PJ (1995) The Drosophila trithorax protein binds to specific chromosomal sites and is co-localized with Polycomb at many sites. EMBO J 14: 2056–2065.

    CAS  PubMed  Google Scholar 

  • Csink A, Henikoff S (1996) Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature 381: 529–531.

    Article  CAS  PubMed  Google Scholar 

  • Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V (2002) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111: 185–196.

    Article  CAS  PubMed  Google Scholar 

  • DeCamillis M, Cheng NS, Pierre D, Brock HW (1992) The polyhomeotic gene of Drosophila encodes a chromatin protein that shares polytene chromosome-binding sites with Polycomb. Genes Dev 6: 223–232.

    Article  CAS  PubMed  Google Scholar 

  • Dernburg AF, Broman KW, Fung JC et al. (1996) Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 85: 745–759.

    Article  CAS  PubMed  Google Scholar 

  • Dietzel S, Niemann H, Bruckner B, Maurange C, Paro R (1999) The nuclear distribution of Polycomb during Drosophila melanogaster development shown with a GFP fusion protein. Chromosoma 108: 83–94.

    Article  CAS  PubMed  Google Scholar 

  • Felsenfeld G (1996) Chromatin unfolds. Cell 86: 13–19.

    Article  CAS  PubMed  Google Scholar 

  • Ficz G, Heintzmann R, Arndt-Jovin DJ (2005) Polycomb group protein complexes exchange rapidly in living Drosophila. Development 132: 3963–3976.

    Article  CAS  PubMed  Google Scholar 

  • Fischle W, Wang Y, Jacobs SA, Kim Y, Allis CD, Khorasanizadeh S (2003) Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev 17: 1870–1881.

    Article  CAS  PubMed  Google Scholar 

  • Franke A, DeCamillis M, Zink D, Cheng N, Brock HW, Paro R (1992) Polycomb and polyhomeotic are constituents of a multimeric protein complex in chromatin of Drosophila melanogaster. EMBO J 11: 2941–2950.

    CAS  PubMed  Google Scholar 

  • Franke A, Messmer S, Paro R (1995) Mapping functional domains of the polycomb protein of Drosophila melanogaster. Chromosome Res 3: 351–360.

    Article  CAS  PubMed  Google Scholar 

  • Fritsch C, Brown JL, Kassis JA, Muller J (1999) The DNA-binding polycomb group protein pleiohomeotic mediates silencing of a Drosophila homeotic gene. Development 126: 3905–3913.

    CAS  PubMed  Google Scholar 

  • Grande MA, van der Kraan I, de Jong L, van Driel R (1997) Nuclear distribution of transcription factors in relation to sites of transcription and RNA polymerase II. J Cell Sci 110(Pt 15): 1781–1791.

    CAS  PubMed  Google Scholar 

  • Grimaud C, Bantignies F, Pal-Bhadra M, Ghana P, Bhadra U, Cavalli G (2006a) RNAi components are required for nuclear clustering of Polycomb group response elements. Cell 124: 957–971.

    Article  CAS  Google Scholar 

  • Grimaud C, Negre N, Cavalli G (2006b) From genetics to epigenetics: the tale of Polycomb group and trithorax group genes. Chromosome Res 14: 363–375.

    Article  CAS  Google Scholar 

  • Holzel M, Rohrmoser M, Schlee M et al. (2005) Mammalian WDR12 is a novel member of the Pes1-Bop1 complex and is required for ribosome biogenesis and cell proliferation. J Cell Biol 170: 367–378.

    Article  PubMed  Google Scholar 

  • Hopmann R, Duncan D, Duncan I (1995) Transvection in the iab-5,6,7 region of the bithorax complex of Drosophila: homology independent interactions in trans. Genetics 139: 815–833.

    CAS  PubMed  Google Scholar 

  • Ishii K, Arib GCL, Van Houwe G, Laemmli UK (2002) Chromatin boundaries in budding yeast: the nuclear pore connection. Cell 109: 551–562.

    Article  CAS  PubMed  Google Scholar 

  • Klymenko T, Muller J (2004) The histone methyltransferases Trithorax and Ash1 prevent transcriptional silencing by Polycomb group proteins. EMBO Rep 5: 373–377.

    Article  CAS  PubMed  Google Scholar 

  • Kurshakova MM, Krasnov AN, Kopytova DV et al. (2007) SAGA and a novel Drosophila export complex anchor efficient transcription and mRNA export to NPC. EMBO J 26: 4956–4965.

    Article  CAS  PubMed  Google Scholar 

  • Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 16: 2893–2905.

    Article  CAS  PubMed  Google Scholar 

  • McCall K, Bender W (1996) Probes of chromatin accessibility in the Drosophila bithorax complex respond differently to Polycomb-mediated repression. EMBO J 15: 569–580.

    CAS  PubMed  Google Scholar 

  • Mihaly J, Hogga I, Gausz J, Gyurkovics H, Karch F (1997) In situ dissection of the Fab-7 region of the bithorax complex into a chromatin domain boundary and a Polycomb-response element. Development 124: 1809–1820.

    CAS  PubMed  Google Scholar 

  • Min J, Zhang Y, Xu RM (2003) Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev 17: 1823–1828.

    Article  CAS  PubMed  Google Scholar 

  • Misteli T (2004) Spatial positioning; a new dimension in genome function. Cell 119: 153–156.

    Article  CAS  PubMed  Google Scholar 

  • Muller J (1995) Transcriptional silencing by the Polycomb protein in Drosophila embryos. EMBO J 14: 1209–1220.

    CAS  PubMed  Google Scholar 

  • Muller J, Hart CM, Francis NJ et al. (2002) Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111: 197–208.

    Article  CAS  PubMed  Google Scholar 

  • Muller M, Hagstrom K, Gyurkovics H, Pirrotta V, Schedl P (1999) The mcp element from the Drosophila melanogaster bithorax complex mediates long-distance regulatory interactions. Genetics 153: 1333–1356.

    CAS  PubMed  Google Scholar 

  • Orlando V, Paro R (1993) Mapping Polycomb-repressed domains in the bithorax complex using in vivo formaldehyde cross-linked chromatin. Cell 75: 1187–1198.

    Article  CAS  PubMed  Google Scholar 

  • Orlando V, Paro R (1995) Chromatin multiprotein complexes involved in the maintenance of transcription patterns. Curr Opin Genet Dev 5: 174–179.

    Article  CAS  PubMed  Google Scholar 

  • Orlando V, Jane EP, Chinwalla V, Harte PJ, Paro R (1998) Binding of trithorax and Polycomb proteins to the bithorax complex: dynamic changes during early Drosophila embryogenesis. EMBO J 17: 5141–5150.

    Article  CAS  PubMed  Google Scholar 

  • Papp B, Muller J (2006) Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev 20: 2041–2054.

    Article  CAS  PubMed  Google Scholar 

  • Paro R (1993) Mechanisms of heritable gene repression during development of Drosophila. Curr Opin Cell Biol 5: 999–1005.

    Article  CAS  PubMed  Google Scholar 

  • Petruk S, Sedkov Y, Smith S et al. (2001) Trithorax and dCBP acting in a complex to maintain expression of a homeotic gene. Science 294: 1331–1334.

    Article  CAS  PubMed  Google Scholar 

  • Pickersgill H, Kalverda B, de Wit E, Talhout W, Fornerod M, van Steensel B (2006) Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet 38: 1005–1014.

    Article  CAS  PubMed  Google Scholar 

  • Pirrotta V (1995) Chromatin complexes regulating gene expression in Drosophila. Curr Opin Genet Dev 5: 466–472.

    Article  CAS  PubMed  Google Scholar 

  • Pirrotta V (1999) Transvection and chromosomal trans-interaction effects. Biochim Biophys Acta 1424: M1–8.

    CAS  PubMed  Google Scholar 

  • Rastelli L, Chan CS, Pirrotta V (1993) Related chromosome binding sites for zeste, suppressors of zeste and Polycomb group proteins in Drosophila and their dependence on Enhancer of zeste function. EMBO J 12: 1513–1522.

    CAS  PubMed  Google Scholar 

  • Ringrose L, Paro R (2004) Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 38: 413–443.

    Article  CAS  PubMed  Google Scholar 

  • Ringrose L, Paro R (2007) Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134: 223–232.

    Article  CAS  PubMed  Google Scholar 

  • Ringrose L, Rehmsmeier M, Dura JM, Paro R (2003) Genome-wide prediction of Polycomb/Trithorax response elements in Drosophila melanogaster. Dev Cell 5: 759–771.

    Article  CAS  PubMed  Google Scholar 

  • Saurin AJ, Shiels C, Williamson J et al. (1998) The human polycomb group complex associates with pericentromeric heterochromatin to form a novel nuclear domain. J Cell Biol 142: 887–898.

    Article  CAS  PubMed  Google Scholar 

  • Schlossherr J, Eggert H, Paro R, Cremer S, Jack RS (1994) Gene inactivation in Drosophila mediated by the Polycomb gene product or by position-effect variegation does not involve major changes in the accessibility of the chromatin fibre. Mol Gen Genet 243: 453–462.

    CAS  PubMed  Google Scholar 

  • Schmid M, Arib G, Laemmli C, Nishikawa J, Durussel T, Laemmli UK (2006) Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol Cell 21: 379–391.

    Article  CAS  PubMed  Google Scholar 

  • Schotta G, Ebert A, Krauss V et al. (2002) Central role of Drosophila Su(var)3–9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 21: 1121–1131.

    Article  CAS  PubMed  Google Scholar 

  • Shao Z, Raible F, Mollaaghababa R et al. (1999) Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98: 37–46.

    Article  CAS  PubMed  Google Scholar 

  • Sigrist CJ, Pirrotta V (1997) Chromatin insulator elements block the silencing of a target gene by the Drosophila polycomb response element (PRE) but allow trans interactions between PREs on different chromosomes. Genetics 147: 209–221.

    CAS  PubMed  Google Scholar 

  • Smith ST, Petruk S, Sedkov Y et al. (2004) Modulation of heat shock gene expression by the TAC1 chromatin-modifying complex. Nat Cell Biol 6: 162–167.

    Article  CAS  PubMed  Google Scholar 

  • Taddei A, Van Houwe G, Hediger F et al. (2006) Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441: 774–778.

    Article  CAS  PubMed  Google Scholar 

  • Tripoulas N, LaJeunesse D, Gildea J, Shearn A (1996) The Drosophila ash1 gene product, which is localized at specific sites on polytene chromosomes, contains a SET domain and a PHD finger. Genetics 143: 913–928.

    CAS  PubMed  Google Scholar 

  • Vazquez J, Muller M, Pirrotta V, Sedat JW (2006) The Mcp element mediates stable long-range chromosome-chromosome interactions in Drosophila. Mol Biol Cell 17: 2158–2165.

    Article  CAS  PubMed  Google Scholar 

  • Williams RR, Azuara V, Perry P et al. (2006) Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J Cell Sci 119: 132–140.

    Article  CAS  PubMed  Google Scholar 

  • Zink B, Paro R (1989) In vivo binding pattern of a trans-regulator of homoeotic genes in Drosophila melanogaster. Nature 337: 468–471.

    Article  CAS  PubMed  Google Scholar 

  • Zink D (1994) Analysis of the interactions of Polycomb protein with regulatory elements of the bithorax complex. PhD Thesis, University of Heidelberg.

  • Zink D, Amaral MD, Englmann A et al. (2004) Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J Cell Biol 166: 815–825.

    Article  CAS  PubMed  Google Scholar 

  • Zink D, Paro R (1995) Drosophila Polycomb-group regulated chromatin inhibits the accessibility of a trans-activator to its target DNA. EMBO J 14: 5660–5671.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Zink.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

10577_2008_1218_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorova, E., Sadoni, N., Dahlsveen, I.K. et al. The nuclear organization of Polycomb/Trithorax group response elements in larval tissues of Drosophila melanogaster . Chromosome Res 16, 649–673 (2008). https://doi.org/10.1007/s10577-008-1218-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-008-1218-6

Key words

Navigation