Skip to main content
Log in

Characterisation of Zygosaccharomyces rouxii centromeres and construction of first Z. rouxii centromeric vectors

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Zygosaccharomyces rouxii is a hemiascomycetous yeast known for its high osmotolerance, the basis of which still remains unknown. By exploring the Génolevures I database, four Z. rouxii fragments homologous to Saccharomyces cerevisiae centromeres were identified. Two of them were subjected to further analysis. Their function as centromeres in Z. rouxii was proved, and they were localized to Z. rouxii chromosomes II and VII, respectively. The species-specificity of centromeres was observed; plasmids with a Z. rouxii centromere were not recognized as centromeric in S. cerevisiae, and a S. cerevisiae centromere did not function as a centromere in Z. rouxii. Constructed plasmids bearing Z. rouxii centromeres serve as the first specific centromeric plasmids, and thus contribute to the so-far limited set of genetic tools needed to study the Z. rouxii specific features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnett J, Payne R, Yarrow D (1990) Yeasts, Characteristics and Identification, 2nd edition. Cambridge & New York: Cambridge University Press.

    Google Scholar 

  • Clarke L (1998) Centromeres: proteins, protein complexes, and repeated domains at centromeres of simple eukaryotes. Curr Opin Genet Dev 8: 212-18.

    Article  PubMed  CAS  Google Scholar 

  • de Montigny J, Straub M, Potier S et al. (2000) Genomic exploration of the hemiascomycetous yeasts: 8. Zygosaccharomyces rouxii. FEBS Lett 487: 52-5.

    Article  PubMed  Google Scholar 

  • Dujon B, Sherman D, Fischer G et al. (2004) Genome evolution in yeasts. Nature 430: 35-4.

    Article  PubMed  Google Scholar 

  • Gietz RD, Sugino A (1988) New yeast–Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74: 527-34.

    Article  PubMed  CAS  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H et al. (1996) Life with 6000 genes. Science 274: 563-67.

    Article  Google Scholar 

  • Heus JJ, Zonneveld BJ, de Steensma HY, van den Berg JA (1993) The consensus sequence of Kluyveromyces lactis centromeres shows homology to functional centromeric DNA from Saccharomyces cerevisiae. Mol Gen Genet 236: 355-62.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57: 267-72.

    Article  PubMed  CAS  Google Scholar 

  • Hosono K (1992) Effect of salt stress on lipid composition and membrane fluidity of the salt-tolerant yeast Zygosaccharomyces rouxii. J Gen Microbiol 138: 91-6.

    CAS  Google Scholar 

  • Meilhoc E, Masson JM, Teissie J (1990) High efficiency transformation of intact yeast cells by electric field pulses. Biotechnology 8: 223-27.

    Article  PubMed  CAS  Google Scholar 

  • Murphy M, Fitzgerald-Hayes M (1990) Cis- and trans-acting factors involved in centromere function in Saccharomyces cerevisiae. Mol Microbiol 4: 329-36.

    Article  PubMed  Google Scholar 

  • Pribylova L, Sychrova H (2003) Efficient transformation of the osmotolerant yeast Zygosaccharomyces rouxii by electroporation. J Microbiol Methods 55: 481-84.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Sanyal K, Baum M, Carbon J (2004) Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proc Natl Acad Sci USA 101: 11374-1379.

    Article  PubMed  CAS  Google Scholar 

  • Souciet J-L, Aigle M, Artiguenave F et al. (2000) Genomic exploration of the hemiascomycetous yeasts: 1. A set of yeast species for molecular evolution studies. FEBS Lett 487: 3-2.

    Article  PubMed  Google Scholar 

  • Sychrova H, Braun V, Potier S, Souciet J-L (2000) Organization of specific genomic regions of Zygosaccharomyces rouxii and Pichia sorbitophila: comparison with Saccharomyces cerevisiae. Yeast 16: 1377-385.

    Article  PubMed  CAS  Google Scholar 

  • Ushio K, Tatsumi H, Araki H, Toh-e A, Oshima, Y (1988) Construction of a host–vector system in the osmophilic haploid yeast Zygosaccharomyces rouxii. J Ferment Technol 66: 481-88.

    Article  CAS  Google Scholar 

  • Vezinhet F, Blondin B, Hallet JN (1990) Chromosomal DNA patterns and mitochondrial-DNA polymorphism as tools for identification of enological strains of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 32: 568-71.

    Article  CAS  Google Scholar 

  • Wallis JW, Chrebet G, Brodsky G, Rolfe M, Rothstein R (1989) A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase. Cell 58: 409-19.

    Article  PubMed  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103-19.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacky de Montigny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pribylova, L., Straub, ML., Sychrova, H. et al. Characterisation of Zygosaccharomyces rouxii centromeres and construction of first Z. rouxii centromeric vectors. Chromosome Res 15, 439–446 (2007). https://doi.org/10.1007/s10577-007-1136-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-007-1136-z

Key words

Navigation