Skip to main content
Log in

Changes in gene expression during male meiosis in Petunia hybrida

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

We analyzed changes in gene expression during male meiosis in Petunia by combining the meiotic staging of pollen mother cells from a single anther with cDNA-AFLP transcript profiling of mRNA from the synchronously developing sister anthers. The transcript profiling experiments focused on the identification of genes with a modulated expression profile during meiosis, while premeiotic archesporial cells and postmeiotic microspores served as a reference. About 8000 transcript tags, estimated at 30% of the total transcriptome, were generated, of which around 6% exhibited a modulated gene expression pattern at meiosis. Cluster analysis revealed a transcriptional cascade that coincides with the initiation and progression through all stages of the two meiotic divisions. Fragments that exhibited high expression specifically during meiosis I were characterized further by sequencing; 90 out of the 293 sequenced fragments showed homology with known genes, belonging to a wide range of gene classes, including previously characterized meiotic genes. In-situ hybridization experiments were performed to determine the spatial expression pattern for five selected transcript tags. Its concurrence with cDNA-AFLP transcript profiles indicates that this is an excellent approach to study genes involved in specialized processes such as meiosis. Our data set provides the potential to unravel unique meiotic genes that are as yet elusive to reverse genetics approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abirached-Darmency M, Tarenghi E, De Jong JH (1991) The effect on meiotic synapsis of a recombination modulator in Petunia hybrida. Genome 35: 443–453.

    Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  • Amon A (1999) The spindle checkpoint. Curr Opin Genet Dev 9: 69–75.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong SJ, Jones GH (2003) Meiotic cytology and chromosome behaviour in wild-type Arabidopsis thaliana. J Exp Bot 54: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong SJ, Caryl AP, Jones GH, Franklin FCH (2002) Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica. J Cell Sci 115: 3645–3655.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong SJ, Christopher F, Franklin H, Jones GH (2001) Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J Cell Sci 114: 4207–4217.

    PubMed  CAS  Google Scholar 

  • Azumi Y, Liu D, Zhao D et al. (2002) Homolog interaction during meiotic prophase I in Arabidopsis requires the SOLO DANCERS gene encoding a novel cyclin-like protein. EMBO J 21: 3081–3095.

    Article  PubMed  CAS  Google Scholar 

  • Breyne P, Dreesen R, Cannoot B et al. (2003) Quantitative cDNA-AFLP analysis for genome-wide expression studies. Mol Gen Genomics 269: 173–179.

    CAS  Google Scholar 

  • Breyne P, Dreesen R, Vandepoele K et al. (2002) Transcriptome analysis during cell division in plants. Proc Natl Acad Sci USA 99: 14825–14830.

    Article  PubMed  CAS  Google Scholar 

  • Bundock P, Hooykaas P (2002) Severe developmental defects, hypersensitivity to DNA-damaging agents, and lengthened telomeres in Arabidopsis MRE11 mutants. Plant Cell 14: 2451–2462.

    Article  PubMed  CAS  Google Scholar 

  • Caryl AP, Armstrong SJ, Jones GH, Franklin FCH (2000) A homologue of the yeast HOP1 gene is inactivated in the Arabidopsis meiotic mutant asy1. Chromosoma 109: 62–71.

    Article  PubMed  CAS  Google Scholar 

  • Chu S, DeRisi J, Eisen M et al. (1998) The transcriptional program of sporulation in budding yeast. Science 282: 699–705.

    Article  PubMed  CAS  Google Scholar 

  • Cnudde F, Gerats T (2005) Meiosis: inducing variation by reduction. Plant Biol 7: 321–341.

    Article  PubMed  CAS  Google Scholar 

  • Cnudde F, Moretti C, Porceddu A, Pezzotti M, Gerats T (2003) Transcript profiling on developing Petunia hybrida floral organs. Sex Plant Reprod 16: 77–85.

    Article  CAS  Google Scholar 

  • Cox KH, Goldberg RB (1988) Analysis of plant gene expression. In Shaw CH, ed., Plant Molecular Biology: A Practical Approach. Oxford: IRL Press, pp. 1–34.

    Google Scholar 

  • De Jong JH, Oud JL (1979) Location and behaviour of constitutive heterochromatin during meiotic prophase in Beta vulgaris L. Genetica 51: 125–133.

    Article  Google Scholar 

  • De Smet F, Mathys J, Marchal K, Thijs G, De Moor B, Moreau Y (2002) Adaptive quality-based clustering of gene expression profiles. Bio-informatics 18: 735–746.

    Google Scholar 

  • Doutriaux M-P, Couteau F, Bergounioux C, White C (1998) Isolation and characterisation of the RAD51 and DMC1 homologs from Arabidopsis thaliana. Mol Gen Genet 257: 283–291.

    Article  PubMed  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95: 14863–14868.

    Article  PubMed  CAS  Google Scholar 

  • Feng XL, Ni WM, Elge S, Mueller-Roeber B, Xu ZH, Xue HW (2006) Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis. Plant Mol Biol 61: 215–226.

    Article  PubMed  CAS  Google Scholar 

  • Fries RE (1911) Die Arten der Gattung Petunia. Kungl. Svenska Vetenskapsakademiens Handlingar 46. Uppsala: Almqvist & Wiksells.

    Google Scholar 

  • Gallego ME, Jeanneau M, Granier F, Bouchez D, Bechtold N, White CI (2001) Disruption of the Arabidopsis RAD50 gene leads to plant sterility and MMS sensitivity. Plant J 25: 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Hamant O, Golubovskaya I, Meeley R et al. (2005) A REC8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr Biol 15: 948–954.

    Article  PubMed  CAS  Google Scholar 

  • Higgins JD, Sanchez-Moran E, Armstrong SJ, Jones GH, Franklin FC (2005) The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev 19: 2488–2500.

    Article  PubMed  CAS  Google Scholar 

  • Hwang SY, Oh B, Knowles BB, Solter D, Lee J-S (2001) Expression of genes involved in mammalian meiosis during the transition from egg to embryo. Mol Reprod Dev 59: 144–158.

    Article  PubMed  CAS  Google Scholar 

  • Kerzendorfer C, Vignard J, Pedrosa-Harand A et al. (2006) The Arabidopsis thaliana MND1 homologue plays a key role in meiotic homologous pairing, synapsis and recombination. J Cell Sci 119: 2486–2496.

    Article  PubMed  CAS  Google Scholar 

  • Klimyuk VI, Jones JDG (1997) AtDMC1, the Arabidopsis homologue of the yeast DMC1 gene: characterization, transposon-induced allelic variation and meiosis-associated expression. Plant J 11: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Koshiyama A, Hamada FN, Namekawa SH et al. (2006) Sumoylation of a meiosis-specific RecA homolog, Lim15/Dmc1, via interaction with the small ubiquitin-related modifier (SUMO)-conjugating enzyme Ubc9. FEBS J 273: 4003–4012.

    Article  PubMed  CAS  Google Scholar 

  • Kovalenko OV, Plug AW, Haaf T et al. (1996). Mammalian ubiquitin-conjugating enzyme Ubc9 interacts with Rad51 recombination protein and localizes in synaptonemal complexes. Proc Natl Acad Sci USA 93: 2958–2963.

    Article  PubMed  CAS  Google Scholar 

  • Mata J, Bähler J (2003) Relations between gene expression and gene conservation in fission yeast. Genome Res 13: 2686–2690.

    Article  PubMed  CAS  Google Scholar 

  • Mata J, Lyne R, Burns G, Bähler J (2002) The transcriptional program of meiosis and sporulation in fission yeast. Nat Genet 32: 143–147.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell AZ, Hanson MR, Skvirsky RC, Ausubel FM (1980) Anther culture of Petunia: genotypes with high frequency of callus, root or plantlet formation. Z Pflanzenphysiol 100: 131–146.

    Google Scholar 

  • Moens PB (1964) A new interpretation of meiotic prophase in Lycopersicum esculentum (tomato). Chromosoma 15: 231–242.

    Article  Google Scholar 

  • Pawlowski WP, Cande WZ (2005) Coordinating the events of the meiotic prophase. Trends Cell Biol 15: 674–681.

    Article  PubMed  CAS  Google Scholar 

  • Pearson WR, Wood T, Zhang Z, Miller W (1997) Comparison of DNA sequences with protein sequences. Genomics 46: 24–36.

    Article  PubMed  CAS  Google Scholar 

  • Porceddu A, Reale L, Lanfaloni L et al. (1999) Cloning and expression analysis of a Petunia hybrida flower specific mitotic-like cyclin. FEBS Lett 462: 211–215.

    Article  PubMed  CAS  Google Scholar 

  • Primig M, Williams RM, Winzeler EA et al. (2000) The core meiotic transcriptome in budding yeasts. Nat Genet 26: 415–423.

    Article  PubMed  CAS  Google Scholar 

  • Prinz S, Amon A (1999) Dual control of mitotic exit. Nature 402: 133–135.

    Article  PubMed  CAS  Google Scholar 

  • Rabitsch KP, Toth A, Galova M et al. (2001) A screen for genes required for meiosis and spore formation based on whole-genome expression. Current Biol 11: 1001–1009.

    Article  PubMed  CAS  Google Scholar 

  • Riggs CD, Zeman K, DeGuzman R, Rzepczyk A, Taylor AA (2001) Antisense inhibition of a tomato meiotic proteinase suggests functional redundancy of proteinases during microsporogenesis. Genome 44: 644–650.

    Article  PubMed  CAS  Google Scholar 

  • Ross KJ, Fransz P, Armstrong SJ et al. (1997) Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA transformed lines. Chromosome Res 5: 551–559.

    Article  CAS  Google Scholar 

  • Ross KJ, Fransz F, Jones GH (1996) A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Res 4: 507–516.

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EJ, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Sanchez-Moran E, Mercier R, Higgins JD, Armstrong SJ, Jones GH, Franklin FC (2005) A strategy to investigate the plant meiotic proteome. Cytogenet Genome Res 109: 181–189.

    Article  PubMed  CAS  Google Scholar 

  • Schultz N, Hamra FK, Garbers DL (2003) A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci USA 100: 12201–12206.

    Article  PubMed  CAS  Google Scholar 

  • Schwarzacher T (2003) Meiosis, recombination and chromosomes: a review of gene isolation and fluorescent in situ hybridization data in plants. J Exp Bot 54: 11–23.

    Article  PubMed  CAS  Google Scholar 

  • Shen X, Mizuguchi G, Hamiche A, Wu C (2000) A chromatin remodelling complex involved in transcription and DNA processing. Nature 406: 541–544.

    Article  PubMed  CAS  Google Scholar 

  • Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147: 195–197.

    Article  PubMed  CAS  Google Scholar 

  • Toth A, Rabitsch KP, Galova M, Schleiffer A, Buonomo SBC, Nasmyth K (2000) Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I. Cell 103: 1155–1168.

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Liang Y, Li C et al. (2005) Microarray analysis of gene expression involved in anther development in rice (Oryza sativa L.). Plant Mol Biol 58: 721–737.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Decottignies A, Nurse P (2003) Function of Cdc2p-dependent Bub1p phosphorylation and Bub1p kinase activity in the mitotic and meiotic spindle checkpoint. EMBO J 22: 1075–1087.

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Ma H (2001) Male meiotic spindle lengths in normal and mutant arabidopsis cells. Plant Physiol 126: 622–630.

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Hu Y, Lodhi M, McCombie WR, Ma H (1999) The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. Proc Natl Acad Sci USA 96: 11416–11421.

    Article  PubMed  CAS  Google Scholar 

  • Yu ZR, Guo R, Ge YH et al. (2003) Gene expression profiles in different stages of mouse spermatogenic cells during spermatogenesis. Biol Reprod 69: 37–47.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janny L. Peters.

Additional information

*Filip Cnudde and Veena Hedatale have equally contributed to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

Transcript Profiling Experiment Male Meiosis in Petunia Anthers (doc 130,560 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cnudde, F., Hedatale, V., de Jong, H. et al. Changes in gene expression during male meiosis in Petunia hybrida . Chromosome Res 14, 919–932 (2006). https://doi.org/10.1007/s10577-006-1099-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-006-1099-5

Key words

Navigation