Skip to main content
Log in

Chromatin architectural proteins

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The accessibility of eukaryotic DNA is dependent upon the hierarchical level of chromatin organization. These include (1) intra-nucleosome interactions, (2) inter-nucleosome interactions and (3) the influence of non-histone chromatin architectural proteins. There appears to be interplay between all these levels, in that one level can override another or that two or more can act in concert. In the first level, the stability of the nucleosome itself is dependent on the number and type of contacts between the core histones and the surrounding DNA, as well as protein–protein interactions within the core histone octamer. Core histone variants, post-translational modifications of the histones, and linker histones binding to the DNA all influence the organization and stability of the nucleosome. When nucleosomes are placed end-to-end in linear chromatin arrays, the second level of organization is revealed. The amino terminal tails of the histone proteins make contacts with adjacent and distant nucleosomes, both within the fiber and between different fibers. The third level of organization is imposed upon these ‘intrinsic’ constraints, and is due to the influence of chromatin binding proteins that alter the architecture of the underlying fiber. These chromatin architectural proteins can, in some cases, bypass intrinsic constraints and impart their own topological affects, resulting in truly unique, supra-molecular assemblages that undoubtedly influence the accessibility of the underlying DNA. In this review we will provide a brief summary of what has been learned about the intrinsic dynamics of chromatin fibers, and survey the biology and architectural affects of the handful of chromatin architectural proteins that have been identified and characterized. These proteins are likely only a small subset of the architectural proteins encoded within the eukaryotic genome. We hope that an increased understanding and appreciation of the contribution of these proteins to genome accessibility will hasten the identification and characterization of more of these important regulatory factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali JY, Bender W (2004) Cross-regulation among the polycomb group genes in Drosophila melanogaster. Mol Cell Biol 24: 7737–7747.

    Article  CAS  PubMed  Google Scholar 

  • Allan J, Harborne N, Rau DC, Gould H (1982) Participation of core histone “tails” in the stabilization of the chromatin solenoid. J Cell Biol 93: 285–297.

    Article  CAS  PubMed  Google Scholar 

  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23: 185–188.

    CAS  PubMed  Google Scholar 

  • Ausio J, Van Holde KE (1988) The histones of the sperm of Spisula solidissima include a novel, cysteine-containing H-1 histone. Cell Differ 23: 175–189.

    Article  CAS  PubMed  Google Scholar 

  • Bednar J, Horowitz RA, Dubochet J, Woodcock CL (1995) Chromatin conformation and salt-induced compaction: three-dimensional structural information from cryoelectron microscopy. J Cell Biol 131: 1365–1376.

    Article  CAS  PubMed  Google Scholar 

  • Bednar J, Horowitz RA, Grigoryev SA et al. (1998) Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc Natl Acad Sci USA 95: 14173–14178.

    Article  CAS  PubMed  Google Scholar 

  • Bose ME, McConnell KH, Gardner-Aukema KA et al. (2004) The origin recognition complex and Sir4 protein recruit Sir1p to yeast silent chromatin through independent interactions requiring a common Sir1p domain. Mol Cell Biol 24: 774–786.

    CAS  PubMed  Google Scholar 

  • Brasher SV, Smith BO, Fogh RH et al. (2000) The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. EMBO J 19: 1587–1597.

    Article  CAS  PubMed  Google Scholar 

  • Brero A, Easwaran HP, Nowak D et al. (2005) Methyl CpG-binding proteins induce large-scale chromatin reorganization during terminal differentiation. J Cell Biol 169: 733–743.

    Article  CAS  PubMed  Google Scholar 

  • Buschdorf JP, Stratling WH (2004) A WW domain binding region in methyl-CpG-binding protein MeCP2: impact on Rett syndrome. J Mol Med 82: 135–143.

    Article  CAS  PubMed  Google Scholar 

  • Carmen AA, Milne L, Grunstein M (2002) Acetylation of the yeast histone H4 N terminus regulates its binding to heterochromatin protein SIR3. J Biol Chem 277: 4778–4781.

    Article  CAS  PubMed  Google Scholar 

  • Carruthers LM, Hansen JC (2000) The core histone N termini function independently of linker histones during chromatin condensation. J Biol Chem 275: 37285–37290.

    CAS  PubMed  Google Scholar 

  • Carruthers LM, Bednar J, Woodcock CL, Hansen JC (1998) Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding. Biochemistry 37: 14776–14787.

    Article  CAS  PubMed  Google Scholar 

  • Chan CS, Rastelli L, Pirrotta V (1994) A Polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. EMBO J 13: 2553–2564.

    CAS  PubMed  Google Scholar 

  • Chandler SP, Guschin D, Landsberger N, Wolffe AP (1999) The methyl-CpG binding transcriptional repressor MeCP2 stably associates with nucleosomal DNA. Biochemistry 38: 7008–7018.

    Article  CAS  PubMed  Google Scholar 

  • Chang JF, Hall BE, Tanny JC, Moazed D, Filman D, Ellenberger T (2003) Structure of the coiled-coil dimerization motif of Sir4 and its interaction with Sir3. Structure (Camb) 11: 637–649.

    CAS  Google Scholar 

  • Cmarko D, Verschure PJ, Otte AP, van Driel R, Fakan S (2003) Polycomb group gene silencing proteins are concentrated in the perichromatin compartment of the mammalian nucleus. J Cell Sci 116: 335–343.

    Article  CAS  PubMed  Google Scholar 

  • Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J Mol Biol 319: 1097–1113.

    Article  CAS  PubMed  Google Scholar 

  • Denu JM (2005) The Sir2 family of protein deacetylases. Curr Opin Chem Biol 9: 431–440.

    Article  CAS  PubMed  Google Scholar 

  • Dorigo B, Schalch T, Bystricky K, Richmond TJ (2003) Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J Mol Biol 327: 85–96.

    Article  CAS  PubMed  Google Scholar 

  • Dorigo B, Schalch T, Kulangara A, Duda S, Schroeder RR, Richmond TJ (2004) Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science 306: 1571–1573.

    Article  CAS  PubMed  Google Scholar 

  • Dyer PN, Edayathumangalam RS, White CL et al. (2004) Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol 375: 23–44.

    CAS  PubMed  Google Scholar 

  • Eissenberg JC, Elgin SC (2000) The HP1 protein family: getting a grip on chromatin. Curr Opin Genet Dev 10: 204–210.

    Article  CAS  PubMed  Google Scholar 

  • Eissenberg JC, Morris GD, Reuter G, Hartnett T (1992) The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation. Genetics 131: 345–352.

    CAS  PubMed  Google Scholar 

  • Eissenberg JC, Ge YW, Hartnett T (1994) Increased phosphorylation of HP1, a heterochromatin-associated protein of Drosophila, is correlated with heterochromatin assembly. J Biol Chem 269: 21315–21321.

    CAS  PubMed  Google Scholar 

  • Enomoto S, Johnston SD, Berman J (2000) Identification of a novel allele of SIR3 defective in the maintenance, but not the establishment, of silencing in Saccharomyces cerevisiae. Genetics 155: 523–538.

    CAS  PubMed  Google Scholar 

  • Fan JY, Gordon F, Luger K, Hansen JC, Tremethick DJ (2002) The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states. Nat Struct Biol 9: 172–176.

    Article  CAS  PubMed  Google Scholar 

  • Fan JY, Rangasamy D, Luger K, Tremethick DJ (2004) H2A.Z alters the nucleosome surface to promote HP1alpha-mediated chromatin fiber folding. Mol Cell 16: 655–661.

    Article  CAS  PubMed  Google Scholar 

  • Ficz G, Heintzmann R, Arndt-Jovin DJ (2005) Polycomb group protein complexes exchange rapidly in living Drosophila. Development 132: 3963–3976.

    Article  CAS  PubMed  Google Scholar 

  • Finch JT, Klug A (1976) Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci USA 73: 1897–1901.

    CAS  PubMed  Google Scholar 

  • Fischle W, Wang Y, Jacobs SA, Kim Y, Allis CD, Khorasanizadeh S (2003) Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev 17: 1870–1881.

    Article  CAS  PubMed  Google Scholar 

  • Fletcher TM, Hansen JC (1995) Core histone tail domains mediate oligonucleosome folding and nucleosomal DNA organization through distinct molecular mechanisms. J Biol Chem 270: 25359–25362.

    CAS  PubMed  Google Scholar 

  • Fletcher TM, Hansen JC (1996) The nucleosomal array: structure/function relationships. Crit Rev Eukaryot Gene Expr 6: 149–188.

    CAS  PubMed  Google Scholar 

  • Fox CA, McConnell KH (2005) Toward biochemical understanding of a transcriptionally silenced chromosomal domain in Saccharomyces cerevisiae. J Biol Chem 280: 8629–8632.

    CAS  PubMed  Google Scholar 

  • Francis NJ, Kingston RE, Woodcock CL (2004) Chromatin compaction by a polycomb group protein complex. Science 306: 1574–1577.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ramirez M, Dong F, Ausio J (1992) Role of the histone “tails” in the folding of oligonucleosomes depleted of histone H1. J Biol Chem 267: 19587–19595.

    CAS  PubMed  Google Scholar 

  • Gasser SM, Cockell MM (2001) The molecular biology of the SIR proteins. Gene 279: 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Georgel PT, Hansen JC (2001) Linker histone function in chromatin: dual mechanisms of action. Biochem Cell Biol 79: 313–316.

    Article  CAS  PubMed  Google Scholar 

  • Georgel PT, Palacios DeBeer MA, Pietz G, Fox CA, Hansen JC (2001) Sir3-dependent assembly of supramolecular chromatin structures in vitro. Proc Natl Acad Sci USA 98: 8584–8589.

    Article  CAS  PubMed  Google Scholar 

  • Georgel PT, Horowitz-Scherer RA, Adkins N, Woodcock CL, Wade PA, Hansen JC (2003) Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation. J Biol Chem 278: 32181–32188.

    Article  CAS  PubMed  Google Scholar 

  • Giannasca PJ, Horowitz RA, Woodcock CL (1993) Transitions between in situ and isolated chromatin. J Cell Sci 105(Pt 2): 551–561.

    CAS  PubMed  Google Scholar 

  • Gordon F, Luger K, Hansen JC (2005) The core histone N-terminal tail domains function independently and additively during salt-dependent oligomerization of nucleosomal arrays. J Biol Chem.

  • Grigoryev SA, Solovieva VO, Spirin KS, Krasheninnikov IA (1992) A novel nonhistone protein (MENT) promotes nuclear collapse at the terminal stage of avian erythropoiesis. Exp Cell Res 198: 268–275.

    Article  CAS  PubMed  Google Scholar 

  • Grigoryev SA, Woodcock CL (1998) Chromatin structure in granulocytes. A link between tight compaction and accumulation of a heterochromatin-associated protein (MENT). J Biol Chem 273: 3082–3089.

    Article  CAS  PubMed  Google Scholar 

  • Grigoryev SA, Bednar J, Woodcock CL (1999) MENT, a heterochromatin protein that mediates higher order chromatin folding, is a new serpin family member. J Biol Chem 274: 5626–5636.

    Article  CAS  PubMed  Google Scholar 

  • Hamvas RM, Reik W, Gaunt SJ, Brown SD, Singh PB (1992) Mapping of a mouse homolog of a heterochromatin protein gene the X chromosome. Mamm Genome 2: 72–75.

    CAS  PubMed  Google Scholar 

  • Hansen JC (2002) Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annu Rev Biophys Biomol Struct 31: 361–392.

    Article  CAS  PubMed  Google Scholar 

  • Hansen JC, Ausio J, Stanik VH, van Holde KE (1989) Homogeneous reconstituted oligonucleosomes, evidence for salt-dependent folding in the absence of histone H1. Biochemistry 28: 9129–9136.

    CAS  PubMed  Google Scholar 

  • Hecht A, Laroche T, Strahl-Bolsinger S, Gasser SM, Grunstein M (1995) Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80: 583–592.

    Article  CAS  PubMed  Google Scholar 

  • Hecht A, Strahl-Bolsinger S, Grunstein M (1996) Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature 383: 92–96.

    Article  CAS  PubMed  Google Scholar 

  • Hendzel MJ, Lever MA, Crawford E, Th'ng JP (2004) The C-terminal domain is the primary determinant of histone H1 binding to chromatin in vivo. J Biol Chem 279: 20028–20034.

    Article  CAS  PubMed  Google Scholar 

  • Hoppe GJ, Tanny JC, Rudner AD et al. (2002) Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol Cell Biol 22: 4167–4180.

    Article  CAS  PubMed  Google Scholar 

  • Horowitz RA, Agard DA, Sedat JW, Woodcock CL (1994) The three-dimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon. J Cell Biol 125: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Hou Z, Bernstein DA, Fox CA, Keck JL (2005) Structural basis of the Sir1-origin recognition complex interaction in transcriptional silencing. Proc Natl Acad Sci USA 102: 8489–8494.

    CAS  PubMed  Google Scholar 

  • Hsu HC, Stillman B, Xu RM (2005) Structural basis for origin recognition complex 1 protein-silence information regulator 1 protein interaction in epigenetic silencing. Proc Natl Acad Sci USA 102: 8519–8524.

    CAS  PubMed  Google Scholar 

  • Huang DW, Fanti L, Pak DT, Botchan MR, Pimpinelli S, Kellum R (1998) Distinct cytoplasmic and nuclear fractions of Drosophila heterochromatin protein 1: their phosphorylation levels and associations with origin recognition complex proteins. J Cell Biol 142: 307–318.

    Article  CAS  PubMed  Google Scholar 

  • Ivy JM, Klar AJ, Hicks JB (1986) Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol Cell Biol 6: 688–702.

    CAS  PubMed  Google Scholar 

  • James TC, Elgin SC (1986) Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6: 3862–3872.

    CAS  PubMed  Google Scholar 

  • Johnson LM, Kayne PS, Kahn ES, Grunstein M (1990) Genetic evidence for an interaction between SIR3 and histone H4 in the repression of the silent mating loci in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 87: 6286–6290.

    CAS  PubMed  Google Scholar 

  • Klar AJ, Strathern JN, Broach JR, Hicks JB (1981) Regulation of transcription in expressed and unexpressed mating type cassettes of yeast. Nature 289: 239–244.

    Article  CAS  PubMed  Google Scholar 

  • Klose RJ, Bird AP (2004) MeCP2 behaves as an elongated monomer that does not stably associate with the Sin3a chromatin remodeling complex. J Biol Chem 279: 46490–46496.

    Article  CAS  PubMed  Google Scholar 

  • Kotake T, Takada S, Nakahigashi K, Ohto M, Goto K (2003) Arabidopsis TERMINAL FLOWER 2 gene encodes a heterochromatin protein 1 homolog and represses both FLOWERING LOCUS T to regulate flowering time and several floral homeotic genes. Plant Cell Physiol 44: 555–564.

    Article  CAS  PubMed  Google Scholar 

  • Kristjuhan A, Wittschieben BO, Walker J, Roberts D, Cairns BR, Svejstrup JQ (2003) Spreading of Sir3 protein in cells with severe histone H3 hypoacetylation. Proc Natl Acad Sci USA 100: 7551–7556.

    Article  CAS  PubMed  Google Scholar 

  • Lavigne M, Francis NJ, King IF, Kingston RE (2004) Propagation of silencing; recruitment and repression of naive chromatin in trans by polycomb repressed chromatin. Mol Cell 13: 415–425.

    Article  CAS  PubMed  Google Scholar 

  • Le Douarin B, Nielsen AL, Garnier JM et al. (1996) A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. EMBO J 15: 6701–6715.

    PubMed  Google Scholar 

  • Lewis PH (1949) Pc: Polycomb. Dros. Inf. Serv. 21.

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276: 565–570.

    CAS  PubMed  Google Scholar 

  • Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F, Bird A (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69: 905–914.

    Article  CAS  PubMed  Google Scholar 

  • Liou GG, Tanny JC, Kruger RG, Walz T, Moazed D (2005) Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation. Cell 121: 515–527.

    Article  CAS  PubMed  Google Scholar 

  • Lowary PT, Widom J (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276: 19–42.

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Hansen JC (2004) Identification of specific functional subdomains within the linker histone H10 C-terminal domain. J Biol Chem 279: 8701–8707.

    CAS  PubMed  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251–260.

    CAS  PubMed  Google Scholar 

  • Luo K, Vega-Palas MA, Grunstein M (2002) Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev 16: 1528–1539.

    Article  CAS  PubMed  Google Scholar 

  • Maison C, Almouzni G (2004) HP1 and the dynamics of heterochromatin maintenance. Nat Rev Mol Cell Biol 5: 296–304.

    Article  CAS  PubMed  Google Scholar 

  • Marmorstein R (2004) Structure and chemistry of the Sir2 family of NAD+-dependent histone/protein deactylases. Biochem Soc Trans 32: 904–909.

    CAS  PubMed  Google Scholar 

  • Martin AM, Pouchnik DJ, Walker JL, Wyrick JJ (2004) Redundant roles for histone H3 N-terminal lysine residues in subtelomeric gene repression in Saccharomyces cerevisiae. Genetics 167: 1123–1132.

    Article  CAS  PubMed  Google Scholar 

  • Martinowich K, Hattori D, Wu H et al. (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302: 890–893.

    Article  CAS  PubMed  Google Scholar 

  • McCall K, Bender W (1996) Probes of chromatin accessibility in the Drosophila bithorax complex respond differently to Polycomb-mediated repression. EMBO J 15: 569–580.

    CAS  PubMed  Google Scholar 

  • Min J, Zhang Y, Xu RM (2003) Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev 17: 1823–1828.

    Article  CAS  PubMed  Google Scholar 

  • Moazed D, Kistler A, Axelrod A, Rine J, Johnson AD (1997) Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3. Proc Natl Acad Sci USA 94: 2186–2191.

    Article  CAS  PubMed  Google Scholar 

  • Moazed D, Rudner AD, Huang J, Hoppe GJ, Tanny JC (2004) A model for step-wise assembly of heterochromatin in yeast. Novartis Found Symp 259: 48–56; discussion 56–62, 163–169.

    CAS  PubMed  Google Scholar 

  • Moretti P, Shore D (2001) Multiple interactions in Sir protein recruitment by Rap1p at silencers and telomeres in yeast. Mol Cell Biol 21: 8082–8094.

    Article  CAS  PubMed  Google Scholar 

  • Moretti P, Freeman K, Coodly L, Shore D (1994) Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev 8: 2257–2269.

    CAS  PubMed  Google Scholar 

  • Murzina N, Verreault A, Laue E, Stillman B (1999) Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol Cell 4: 529–540.

    Article  CAS  PubMed  Google Scholar 

  • Nan X, Meehan RR, Bird A (1993) Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res 21: 4886–4892.

    CAS  PubMed  Google Scholar 

  • Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393: 386–389.

    CAS  PubMed  Google Scholar 

  • Nielsen AL, Ortiz JA, You J et al. (1999) Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family. EMBO J 18: 6385–6395.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen AL, Oulad-Abdelghani M, Ortiz JA, Remboutsika E, Chambon P, Losson R (2001) Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins. Mol Cell 7: 729–739.

    Article  CAS  PubMed  Google Scholar 

  • Pirrotta V (1998) Polycombing the genome: PcG, trxG, and chromatin silencing. Cell 93: 333–336.

    Article  CAS  PubMed  Google Scholar 

  • Radivojac P, Obradovic Z, Smith DK et al. (2004) Protein flexibility and intrinsic disorder. Protein Sci 13: 71–80.

    Article  CAS  PubMed  Google Scholar 

  • Richmond TJ, Finch JT, Rushton B, Rhodes D, Klug A (1984) Structure of the nucleosome core particle at 7 A resolution. Nature 311: 532–537.

    Article  CAS  PubMed  Google Scholar 

  • Rudner AD, Hall BE, Ellenberger T, Moazed D (2005) A nonhistone protein-protein interaction required for assembly of the SIR complex and silent chromatin. Mol Cell Biol 25: 4514–28.

    Article  CAS  PubMed  Google Scholar 

  • Rusche LN, Kirchmaier AL, Rine J (2003) The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72: 481–516.

    Article  CAS  PubMed  Google Scholar 

  • Ryan RF, Schultz DC, Ayyanathan K et al. (1999) KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Kruppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing. Mol Cell Biol 19: 4366–4378.

    CAS  PubMed  Google Scholar 

  • Santos-Rosa H, Bannister AJ, Dehe PM, Geli V, Kouzarides T (2004) Methylation of H3 lysine 4 at euchromatin promotes Sir3p association with heterochromatin. J Biol Chem 279: 47506–47512.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz PM, Hansen JC (1994) Formation and stability of higher order chromatin structures. Contributions of the histone octamer. J Biol Chem 269: 16284–16289.

    CAS  PubMed  Google Scholar 

  • Schwarz PM, Felthauser A, Fletcher TM, Hansen JC (1996) Reversible oligonucleosome self-association: dependence on divalent cations and core histone tail domains. Biochemistry 35: 4009–4015.

    Article  CAS  PubMed  Google Scholar 

  • Shahbazian MD, Zoghbi HY (2002) Rett syndrome and MeCP2: linking epigenetics and neuronal function. Am J Hum Genet 71: 1259–1272.

    Article  CAS  PubMed  Google Scholar 

  • Shao Z, Raible F, Mollaaghababa R et al. (1999) Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98: 37–46.

    Article  CAS  PubMed  Google Scholar 

  • Simpson RT, Stafford DW (1983) Structural features of a phased nucleosome core particle. Proc Natl Acad Sci USA 80: 51–55.

    CAS  PubMed  Google Scholar 

  • Simpson RT, Thoma F, Brubaker JM (1985) Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell 42: 799–808.

    Article  CAS  PubMed  Google Scholar 

  • Smothers JF, Henikoff S (2001) The hinge and chromo shadow domain impart distinct targeting of HP1-like proteins. Mol Cell Biol 21: 2555–2569.

    Article  CAS  PubMed  Google Scholar 

  • Springhetti EM, Istomina NE, Whisstock JC, Nikitina T, Woodcock CL, Grigoryev SA (2003) Role of the M-loop and reactive center loop domains in the folding and bridging of nucleosome arrays by MENT. J Biol Chem 278: 43384–43393.

    Article  CAS  PubMed  Google Scholar 

  • Taddei A, Hediger F, Neumann FR, Bauer C, Gasser SM (2004) Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. EMBO J 23: 1301–1312.

    Article  CAS  PubMed  Google Scholar 

  • Thiru A, Nietlispach D, Mott HR et al. (2004) Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin. EMBO J 23: 489–499.

    Article  CAS  PubMed  Google Scholar 

  • Thoma F, Koller T (1977) Influence of histone H1 on chromatin structure. Cell 12: 101–107.

    Article  CAS  PubMed  Google Scholar 

  • Thoma F, Koller T, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol 83: 403–427.

    Article  CAS  PubMed  Google Scholar 

  • Tse C, Hansen JC (1997) Hybrid trypsinized nucleosomal arrays: identification of multiple functional roles of the H2A/H2B and H3/H4 N-termini in chromatin fiber compaction. Biochemistry 36: 11381–11388.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Connelly JJ, Wang CL, Sternglanz R (2004) Importance of the Sir3 N terminus and its acetylation for yeast transcriptional silencing. Genetics 168: 547–551.

    CAS  PubMed  Google Scholar 

  • White CL, Suto RK, Luger K (2001) Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions. EMBO J 20: 5207–5218.

    Article  CAS  PubMed  Google Scholar 

  • Widom J (1989) Toward a unified model of chromatin folding. Annu Rev Biophys Biophys Chem 18: 365–395.

    Article  CAS  PubMed  Google Scholar 

  • Wolffe AP (1995) Chromatin Structure and Function. Academic Press Limited, San Diego. 299 pp.

    Google Scholar 

  • Wolffe AP (1997) Histone H1. Int J Biochem Cell Biol 29: 1463–1466.

    Article  CAS  PubMed  Google Scholar 

  • Wolffe AP (1998) Packaging principle: how DNA methylation and histone acetylation control the transcriptional activity of chromatin. J Exp Zool 282: 239–244.

    Article  CAS  PubMed  Google Scholar 

  • Woodcock CL, Dimitrov S (2001) Higher-order structure of chromatin and chromosomes. Curr Opin Genet Dev 11: 130–135.

    Article  CAS  PubMed  Google Scholar 

  • Yusufzai TM, Wolffe AP (2000) Functional consequences of Rett syndrome mutations on human MeCP2. Nucleic Acids Res 28: 4172–4179.

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Eissenberg JC (1999) Phosphorylation of heterochromatin protein 1 by casein kinase II is required for efficient heterochromatin binding in Drosophila. J Biol Chem 274: 15095–15100.

    CAS  PubMed  Google Scholar 

  • Zhao T, Heyduk T, Eissenberg JC (2001) Phosphorylation site mutations in heterochromatin protein 1 (HP1) reduce or eliminate silencing activity. J Biol Chem 276: 9512–9518.

    CAS  PubMed  Google Scholar 

  • Zheng C, Lu X, Hansen JC, Hayes JJ (2005) Salt-dependent intra-and inter-nucleosomal interactions of the H3 tail domain in a model oligonucleosomal array. J Biol Chem.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey C. Hansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McBryant, S.J., Adams, V.H. & Hansen, J.C. Chromatin architectural proteins. Chromosome Res 14, 39–51 (2006). https://doi.org/10.1007/s10577-006-1025-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-006-1025-x

Key words

Navigation