Skip to main content

Advertisement

Log in

SWI/SNF Chromatin Remodelers: Structural, Functional and Mechanistic Implications

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The nuclear events of a eukaryotic cell, such as replication, transcription, recombination and repair etc. require the transition of the compactly arranged chromatin into an uncompacted state and vice-versa. This is mediated by post-translational modification of the histones, exchange of histone variants and ATP-dependent chromatin remodeling. The SWI/SNF chromatin remodeling complexes are one of the most well characterized families of chromatin remodelers. In addition to their role in modulating chromatin, they have also been assigned roles in cancer and health-related anomalies such as developmental, neurocognitive, and intellectual disabilities. Owing to their vital cellular and medical connotations, developing an understanding of the structural and functional aspects of the complex becomes imperative. However, due to the intricate nature of higher-order chromatin as well as compositional heterogeneity of the SWI/SNF complex, intra-species isoforms and inter-species homologs, this often becomes challenging. To this end, the present review attempts to present an amalgamated perspective on the discovery, structure, function, and regulation of the SWI/SNF complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kornberg, R. D. (1974). Chromatin structure: a repeating unit of histones and DNA. Science, 184(4139), 868–871.

    Article  CAS  PubMed  Google Scholar 

  2. Kornberg, R. D., & Thomas, J. O. (1974). Chromatin structure: oligomers of the histones. Science, 184(4139), 865–868.

    Article  CAS  PubMed  Google Scholar 

  3. Luger, K., Dechassa, M. L., & Tremethick, D. J. (2012). New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nature Reviews Molecular Cell Biology, 13(7), 436–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rippe, K., Schrader, A., Riede, P., Strohner, R., Lehmann, E., & Längst, G. (2007). DNA sequence-and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes. Proceedings of the National Academy of Sciences, 104(40), 15635–15640.

    Article  CAS  Google Scholar 

  5. Clapier, C. R., & Cairns, B. R. (2009). The biology of chromatin remodeling complexes. Annual Review of Biochemistry, 78, 273–304.

    Article  CAS  PubMed  Google Scholar 

  6. Tyagi, M., Imam, N., Verma, K., & Patel, A. K. (2016). Chromatin remodelers: We are the drivers!! Nucleus, 7(4), 388–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Neigeborn, L., & Carlson, M. (1984). Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics, 108(4), 845–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stern, M., Jensen, R., & Herskowitz, I. (1984). Five SWI genes are required for expression of the HO gene in yeast. Journal of Molecular Biology, 178(4), 853–868.

    Article  CAS  PubMed  Google Scholar 

  9. Peterson, C. L., & Herskowitz, I. (1992). Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell, 68(3), 573–583.

    Article  CAS  PubMed  Google Scholar 

  10. Cairns, B. R., Kim, Y.-J., Sayre, M. H., Laurent, B. C., & Kornberg, R. D. (1994). A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proceedings of the National Academy of Sciences, 91(5), 1950–1954.

    Article  CAS  Google Scholar 

  11. Kruger, W., Peterson, C. L., Sil, A., Coburn, C., Arents, G., Moudrianakis, E. N., & Herskowitz, I. (1995). Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes & Development, 9(22), 2770–2779.

    Article  CAS  Google Scholar 

  12. Prelich, G., & Winston, F. (1993). Mutations that suppress the deletion of an upstream activating sequence in yeast: involvement of a protein kinase and histone H3 in repressing transcription in vivo. Genetics, 135(3), 665–676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hirschhorn, J. N., Brown, S. A., Clark, C. D., & Winston, F. (1992). Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes & Development, 6(12a), 2288–2298.

    Article  CAS  Google Scholar 

  14. Laurent, B. C., Treitel, M. A., & Carlson, M. (1991). Functional interdependence of the yeast SNF2, SNF5, and SNF6 proteins in transcriptional activation. Proceedings of the National Academy of Sciences, 88(7), 2687–2691.

    Article  CAS  Google Scholar 

  15. Kennison, J. A., & Tamkun, J. W. (1988). Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila. Proceedings of the National Academy of Sciences, 85(21), 8136–8140.

    Article  CAS  Google Scholar 

  16. Tamkun, J. W., Deuring, R., Scott, M. P., Kissinger, M., Pattatucci, A. M., Kaufman, T. C., & Kennison, J. A. (1992). brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2SWI2. Cell, 68(3), 561–572.

    Article  CAS  PubMed  Google Scholar 

  17. Dingwall, A. K., Beek, S. J., McCallum, C. M., Tamkun, J. W., Kalpana, G. V., Goff, S. P., & Scott, M. P. (1995). The Drosophila snr1 and brm proteins are related to yeast SWI/SNF proteins and are components of a large protein complex. Molecular Biology of the Cell, 6(7), 777–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Logie, C., & Peterson, C. L. (1999). Purification and biochemical properties of yeast SWI/SNF complex. In Methods in enzymology (Vol. 304, pp. 726–741). Elsevier.

  19. Wang, W., Côté, J., Xue, Y., Zhou, S., Khavari, P. A., Biggar, S. R., & Yaniv, M. (1996). Purification and biochemical heterogeneity of the mammalian SWI‐SNF complex. The EMBO Journal, 15(19), 5370–5382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Panigrahi, A. K., Tomar, R. S., & Chaturvedi, M. M. (2003b). A SWI/SNF-like factor from chicken liver that disrupts nucleosomes and transfers histone octamers in cis and trans. Archives of Biochemistry and Biophysics, 414(1), 24–33.

    Article  CAS  PubMed  Google Scholar 

  21. Panigrahi, A. K., Tomar, R. S., & Chaturvedi, M. M. (2003a). Mechanism of nucleosome disruption and octamer transfer by the chicken SWI/SNF-like complex. Biochemical and Biophysical Research Communications, 306(1), 72–78.

    Article  CAS  PubMed  Google Scholar 

  22. Farrona, S., Hurtado, L., Bowman, J. L., & Reyes, J. C. (2004). The Arabidopsis thaliana SNF2 homolog AtBRM controls shoot development and flowering. Development, 131(20), 4965–4975.

    Article  CAS  PubMed  Google Scholar 

  23. Han, S. K., Wu, M. F., Cui, S., & Wagner, D. (2015). Roles and activities of chromatin remodeling ATP ases in plants. The Plant Journal, 83(1), 62–77.

    Article  CAS  PubMed  Google Scholar 

  24. Reyes, J. C. (2014). The many faces of plant SWI/SNF complex. Molecular Plant, 7(3), 454–458.

    Article  CAS  PubMed  Google Scholar 

  25. Large, E. E., & Mathies, L. D. (2014). Caenorhabditis elegans SWI/SNF subunits control sequential developmental stages in the somatic gonad. G3: Genes, Genomes, Genetics, 4(3), 471–483.

    Article  PubMed  Google Scholar 

  26. Mathies, L. D., Blackwell, G., & Bettinger, J. C. (2022). New alleles of the SWI/SNF chromatin remodeling complex gene phf-10. MicroPubl Biol. https://doi.org/10.17912/micropub.biology.000533.

  27. Mani, U., Goutham, R. N. A., & Mohan, S. S. (2017). SWI/SNF Infobase—An exclusive information portal for SWI/SNF remodeling complex subunits. PLoS One, 12(9), e0184445.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Phelan, M. L., Sif, S., Narlikar, G. J., & Kingston, R. E. (1999). Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Molecular Cell, 3(2), 247–253.

    Article  CAS  PubMed  Google Scholar 

  29. Kadoch, C., Hargreaves, D. C., Hodges, C., Elias, L., Ho, L., Ranish, J., & Crabtree, G. R. (2013). Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nature Genetics, 45(6), 592–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tang, L., Nogales, E., & Ciferri, C. (2010). Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription. Progress in Biophysics and Molecular Biology, 102(2-3), 122–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mohrmann, L., & Verrijzer, C. P. (2005). Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1681(2-3), 59–73.

    Article  CAS  PubMed  Google Scholar 

  32. Hodges, C., Kirkland, J. G., & Crabtree, G. R. (2016). The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer. Cold Spring Harbor Perspectives in Medicine, 6(8), a026930.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lessard, J., Wu, J. I., Ranish, J. A., Wan, M., Winslow, M. M., Staahl, B. T., & Crabtree, G. R. (2007). An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron, 55(2), 201–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu, J. I., Lessard, J., Olave, I. A., Qiu, Z., Ghosh, A., Graef, I. A., & Crabtree, G. R. (2007). Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron, 56(1), 94–108.

    Article  CAS  PubMed  Google Scholar 

  35. Lickert, H., Takeuchi, J. K., von Both, I., Walls, J. R., McAuliffe, F., Adamson, S. L., & Bruneau, B. G. (2004). Baf60c is essential for function of BAF chromatin remodeling complexes in heart development. Nature, 432(7013), 107–112.

    Article  CAS  PubMed  Google Scholar 

  36. Lange, M., Demajo, S., Jain, P., & Di Croce, L. (2011). Combinatorial assembly and function of chromatin regulatory complexes. Epigenomics, 3(5), 567–580.

    Article  CAS  PubMed  Google Scholar 

  37. Bultman, S., Gebuhr, T., Yee, D., La Mantia, C., Nicholson, J., Gilliam, A., & Crabtree, G. (2000). A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Molecular Cell, 6(6), 1287–1295.

    Article  CAS  PubMed  Google Scholar 

  38. Guidi, C. J., Sands, A. T., Zambrowicz, B. P., Turner, T. K., Demers, D. A., Webster, W., & Jones, S. N. (2001). Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Molecular and Cellular Biology, 21(10), 3598–3603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schick, S., Rendeiro, A. F., Runggatscher, K., Ringler, A., Boidol, B., Hinkel, M., & Parapatics, K. (2019). Systematic characterization of BAF mutations provides insights into intracomplex synthetic lethalities in human cancers. Nature Genetics, 51(9), 1399–1410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hah, N., Kolkman, A., Ruhl, D. D., Pijnappel, W. P., Heck, A. J., Timmers, H. T. M., & Kraus, W. L. (2010). A role for BAF57 in cell cycle–dependent transcriptional regulation by the SWI/SNF chromatin remodeling complex. Cancer Research, 70(11), 4402–4411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nie, Z., Yan, Z., Chen, E. H., Sechi, S., Ling, C., Zhou, S., & Kanakubo, E. (2003). Novel SWI/SNF chromatin-remodeling complexes contain a mixed-lineage leukemia chromosomal translocation partner. Molecular and Cellular Biology, 23(8), 2942–2952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Michel, B. C., D’Avino, A. R., Cassel, S. H., Mashtalir, N., McKenzie, Z. M., McBride, M. J., & Soares, L. M. (2018). A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nature Cell Biology, 20(12), 1410–1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kadoch, C., & Crabtree, G. R. (2015). Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. Science Advances, 1(5), e1500447.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dastidar, R. G., Hooda, J., Shah, A., Cao, T. M., Henke, R. M., & Zhang, L. (2012). The nuclear localization of SWI/SNF proteins is subjected to oxygen regulation. Cell & Bioscience, 2(1), 1–13.

    Article  Google Scholar 

  45. Cote, J., Quinn, J., Workman, J. L., & Peterson, C. L. (1994). Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science, 265(5168), 53–60.

    Article  CAS  PubMed  Google Scholar 

  46. Byrd, A. K., & Raney, K. D. (2012). Superfamily 2 helicases. Frontiers in Bioscience, 17, 2070.

    Article  Google Scholar 

  47. Fairman-Williams, M. E., Guenther, U.-P., & Jankowsky, E. (2010). SF1 and SF2 helicases: family matters. Current Opinion in Structural Biology, 20(3), 313–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dürr, H., Flaus, A., Owen-Hughes, T., & Hopfner, K.-P. (2006). Snf2 family ATPases and DExx box helicases: differences and unifying concepts from high-resolution crystal structures. Nucleic Acids Research, 34(15), 4160–4167.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sen, P., Vivas, P., Dechassa, M. L., Mooney, A. M., Poirier, M. G., & Bartholomew, B. (2013). The SnAC domain of SWI/SNF is a histone anchor required for remodeling. Molecular and Cellular Biology, 33(2), 360–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Smith, C. L., & Peterson, C. L. (2005). A conserved Swi2/Snf2 ATPase motif couples ATP hydrolysis to chromatin remodeling. Molecular and Cellular Biology, 25(14), 5880–5892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mashtalir, N., D’Avino, A. R., Michel, B. C., Luo, J., Pan, J., Otto, J. E., & Pierre, R. S. (2018). Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell, 175(5), 1272–1288.e1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Asturias, F. J., Chung, W.-H., Kornberg, R. D., & Lorch, Y. (2002). Structural analysis of the RSC chromatin-remodeling complex. Proceedings of the National Academy of Sciences, 99(21), 13477–13480.

    Article  CAS  Google Scholar 

  53. Smith, C. L., Horowitz-Scherer, R., Flanagan, J. F., Woodcock, C. L., & Peterson, C. L. (2003). Structural analysis of the yeast SWI/SNF chromatin remodeling complex. Nature Structural Biology, 10(2), 141–145.

    Article  CAS  PubMed  Google Scholar 

  54. Leschziner, A. E., Lemon, B., Tjian, R., & Nogales, E. (2005). Structural studies of the human PBAF chromatin-remodeling complex. Structure, 13(2), 267–275.

    Article  CAS  PubMed  Google Scholar 

  55. Dechassa, M. L., Zhang, B., Horowitz-Scherer, R., Persinger, J., Woodcock, C. L., Peterson, C. L., & Bartholomew, B. (2008). Architecture of the SWI/SNF-nucleosome complex. Molecular and Cellular Biology, 28(19), 6010–6021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chaban, Y., Ezeokonkwo, C., Chung, W.-H., Zhang, F., Kornberg, R. D., Maier-Davis, B., & Asturias, F. J. (2008). Structure of a RSC–nucleosome complex and insights into chromatin remodeling. Nature Structural & Molecular Biology, 15(12), 1272–1277.

    Article  CAS  Google Scholar 

  57. Schubert, H. L., Wittmeyer, J., Kasten, M. M., Hinata, K., Rawling, D. C., Héroux, A., & Hill, C. P. (2013). Structure of an actin-related subcomplex of the SWI/SNF chromatin remodeler. Proceedings of the National Academy of Sciences, 110(9), 3345–3350.

    Article  CAS  Google Scholar 

  58. Xia, X., Liu, X., Li, T., Fang, X., & Chen, Z. (2016). Structure of chromatin remodeler Swi2/Snf2 in the resting state. Nature Structural & Molecular Biology, 23(8), 722–729.

    Article  CAS  Google Scholar 

  59. Liu, X., Li, M., Xia, X., Li, X., & Chen, Z. (2017). Mechanism of chromatin remodeling revealed by the Snf2-nucleosome structure. Nature, 544(7651), 440–445.

    Article  CAS  PubMed  Google Scholar 

  60. Han, Y., Reyes, A. A., Malik, S., & He, Y. (2020). Cryo-EM structure of SWI/SNF complex bound to a nucleosome. Nature, 579(7799), 452–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. He, S., Wu, Z., Tian, Y., Yu, Z., Yu, J., Wang, X., & Xu, Y. (2020). Structure of nucleosome-bound human BAF complex. Science, 367(6480), 875–881.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, Z., Wang, X., Xin, J., Ding, Z., Liu, S., Fang, Q., & Cai, G. (2018). Architecture of SWI/SNF chromatin remodeling complex. Protein & Cell, 9(12), 1045–1049.

    Article  CAS  Google Scholar 

  63. Chen, K., Yuan, J., Sia, Y., & Chen, Z. (2023). Mechanism of action of the SWI/SNF family complexes. Nucleus, 14(1), 1–14.

    Article  Google Scholar 

  64. Savas, S., & Skardasi, G. (2018). The SWI/SNF complex subunit genes: Their functions, variations, and links to risk and survival outcomes in human cancers. Critical Reviews in Oncology/Hematology, 123, 114–131.

    Article  PubMed  Google Scholar 

  65. He, Z., Chen, K., Ye, Y., & Chen, Z. (2021). Structure of the SWI/SNF complex bound to the nucleosome and insights into the functional modularity. Cell Discovery, 7(1), 1–4.

    Article  CAS  Google Scholar 

  66. Simone, C. (2006). SWI/SNF: the crossroads where extracellular signaling pathways meet chromatin. Journal of Cellular Physiology, 207(2), 309–314. https://doi.org/10.1002/jcp.20514.

    Article  CAS  PubMed  Google Scholar 

  67. Korber, P., Luckenbach, T., Blaschke, D., & Hörz, W. (2004). Evidence for histone eviction in trans upon induction of the yeast PHO5 promoter. Molecular and Cellular Biology, 24(24), 10965–10974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Phelan, M. L., Schnitzler, G. R., & Kingston, R. E. (2000). Octamer transfer and creation of stably remodeled nucleosomes by human SWI-SNF and its isolated ATPases. Molecular and Cellular Biology, 20(17), 6380–6389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Narlikar, G. J., Sundaramoorthy, R., & Owen-Hughes, T. (2013). Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell, 154(3), 490–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhou, K., Gaullier, G., & Luger, K. (2019). Nucleosome structure and dynamics are coming of age. Nature Structural & Molecular Biology, 26(1), 3–13.

    Article  CAS  Google Scholar 

  71. Zofall, M., Persinger, J., Kassabov, S. R., & Bartholomew, B. (2006). Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nature Structural & Molecular Biology, 13(4), 339–346.

    Article  CAS  Google Scholar 

  72. Saha, A., Wittmeyer, J., & Cairns, B. R. (2006). Chromatin remodeling: the industrial revolution of DNA around histones. Nature Reviews Molecular Cell Biology, 7(6), 437–447.

    Article  CAS  PubMed  Google Scholar 

  73. Clapier, C. R., Iwasa, J., Cairns, B. R., & Peterson, C. L. (2017). Mechanisms of action and regulation of ATP-dependent chromatin-remodeling complexes. Nature Reviews Molecular Cell Biology, 18(7), 407–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bowman, G. D. (2019). Uncovering a new step in sliding nucleosomes. Trends in Biochemical Sciences, 44(8), 643–645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bowman, G. D., & Deindl, S. (2019). Remodeling the genome with DNA twists. Science, 366(6461), 35–36.

    Article  CAS  PubMed  Google Scholar 

  76. Kassabov, S. R., Zhang, B., Persinger, J., & Bartholomew, B. (2003). SWI/SNF unwraps, slides, and rewraps the nucleosome. Molecular Cell, 11(2), 391–403. https://doi.org/10.1016/s1097-2765(03)00039-x.

    Article  CAS  PubMed  Google Scholar 

  77. Panigrahi, A. K., Tomar, R. S., & Chaturvedi, M. M. (2003). Mechanism of nucleosome disruption and octamer transfer by the chicken SWI/SNF-like complex. Biochemical and Biophysical Research Communication, 306(1), 72–78. https://doi.org/10.1016/s0006-291x(03)00906-9.

    Article  CAS  Google Scholar 

  78. Raut, V. V., Pandey, S. M., & Sainis, J. K. (2011). Histone octamer trans-transfer: a signature mechanism of ATP-dependent chromatin remodeling unravelled in wheat nuclear extract. Annals of Botany, 108(7), 1235–1246. https://doi.org/10.1093/aob/mcr232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Clapier, C. R., Kasten, M. M., Parnell, T. J., Viswanathan, R., Szerlong, H., Sirinakis, G., & Cairns, B. R. (2016). Regulation of DNA translocation efficiency within the chromatin remodeler RSC/Sth1 potentiates nucleosome sliding and ejection. Molecular Cell, 62(3), 453–461. https://doi.org/10.1016/j.molcel.2016.03.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Krajewski, W. A. (2016). On the role of inter-nucleosomal interactions and intrinsic nucleosome dynamics in chromatin function. Biochemistry and Biophysics Reports, 5, 492–501.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Simone, C. (2006). SWI/SNF: the crossroads where extracellular signaling pathways meet chromatin. Journal of Cellular Physiology, 207(2), 309–314.

    Article  CAS  PubMed  Google Scholar 

  82. Neely, K. E., Hassan, A. H., Wallberg, A. E., Steger, D. J., Cairns, B. R., Wright, A. P., & Workman, J. L. (1999). Activation domain-mediated targeting of the SWI/SNF complex to promoters stimulates transcription from nucleosome arrays. Molecular Cell, 4(4), 649–655. https://doi.org/10.1016/s1097-2765(00)80216-6.

    Article  CAS  PubMed  Google Scholar 

  83. Yudkovsky, N., Logie, C., Hahn, S., & Peterson, C. L. (1999). Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators. Genes and Development, 13(18), 2369–2374. https://doi.org/10.1101/gad.13.18.2369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yoon, S., Qiu, H., Swanson, M. J., & Hinnebusch, A. G. (2003). Recruitment of SWI/SNF by Gcn4p does not require Snf2p or Gcn5p but depends strongly on SWI/SNF integrity, SRB mediator, and SAGA. Molecular Cellular Biology, 23(23), 8829–8845. https://doi.org/10.1128/mcb.23.23.8829-9945.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cosma, M. P., Tanaka, T., & Nasmyth, K. (2016). Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell, 166(3), 781 https://doi.org/10.1016/j.cell.2016.07.016.

    Article  CAS  PubMed  Google Scholar 

  86. Dhalluin, C., Carlson, J. E., Zeng, L., He, C., Aggarwal, A. K., & Zhou, M. M. (1999). Structure and ligand of a histone acetyltransferase bromodomain. Nature, 399(6735), 491–496. https://doi.org/10.1038/20974.

    Article  CAS  PubMed  Google Scholar 

  87. Kwon, S. J., Lee, S. K., Na, J., Lee, S. A., Lee, H. S., Park, J. H., & Kwon, J. (2015). Targeting BRG1 chromatin remodeler via its bromodomain for enhanced tumor cell radiosensitivity in vitro and in vivo. Molecular Cancer Therapeutics, 14(2), 597–607. https://doi.org/10.1158/1535-7163.MCT-14-0372.

    Article  CAS  PubMed  Google Scholar 

  88. Fry, C. J., & Peterson, C. L. (2001). Chromatin remodeling enzymes: who’s on first. Current Biology, 11(5), R185–R197. https://doi.org/10.1016/s0960-9822(01)00090-2.

    Article  CAS  PubMed  Google Scholar 

  89. Angus-Hill, M. L., Schlichter, A., Roberts, D., Erdjument-Bromage, H., Tempst, P., & Cairns, B. R. (2001). A Rsc3/Rsc30 zinc cluster dimer reveals novel roles for the chromatin remodeler RSC in gene expression and cell cycle control. Molecular Cell, 7(4), 741–751.

    Article  CAS  PubMed  Google Scholar 

  90. Sudarsanam, P., & Winston, F. (2000). The Swi/Snf family: nucleosome-remodeling complexes and transcriptional control. TRENDS in Genetics, 16(8), 345–351.

    Article  CAS  PubMed  Google Scholar 

  91. Urnov, F. D., & Wolffe, A. P. (2001). Chromatin remodeling and transcriptional activation: the cast (in order of appearance). Oncogene, 20(24), 2991–3006.

    Article  CAS  PubMed  Google Scholar 

  92. Lorch, Y., Cairns, B. R., Zhang, M., & Kornberg, R. D. (1998). Activated RSC–nucleosome complex and persistently altered form of the nucleosome. Cell, 94(1), 29–34.

    Article  CAS  PubMed  Google Scholar 

  93. Schnitzler, G., Sif, S., & Kingston, R. E. (1998). Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell, 94(1), 17–27.

    Article  CAS  PubMed  Google Scholar 

  94. Choi, J., Jeon, S., Choi, S., Park, K., & Seong, R. H. (2015). The SWI/SNF chromatin remodeling complex regulates germinal center formation by repressing Blimp-1 expression. Proceedings of the National Academy of Sciences, 112(7), E718–E727.

    Article  CAS  Google Scholar 

  95. Collins, R. T., & Treisman, J. E. (2000). Osa-containing Brahma chromatin remodeling complexes are required for the repression of wingless target genes. Genes & Development, 14(24), 3140–3152.

    Article  CAS  Google Scholar 

  96. Murphy, D. J., Hardy, S., & Engel, D. A. (1999). Human SWI-SNF component BRG1 represses transcription of the c-fos gene. Molecular and Cellular Biology, 19(4), 2724–2733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nagl, Jr, N. G., Wang, X., Patsialou, A., Van Scoy, M., & Moran, E. (2007). Distinct mammalian SWI/SNF chromatin remodeling complexes with opposing roles in cell‐cycle control. The EMBO Journal, 26(3), 752–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ho, L., Miller, E. L., Ronan, J. L., Ho, W. Q., Jothi, R., & Crabtree, G. R. (2011). esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signalling and by regulating polycomb function. Nature Cell Biology, 13(8), 903–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ramirez-Prado, J. S., & Benhamed, M. (2021). New partners for old friends: Plant SWI/SNF complexes. Molecular Plant, 14(6), 870–872.

    Article  CAS  PubMed  Google Scholar 

  100. Lu, C., & Allis, C. D. (2017). SWI/SNF complex in cancer. Nature Genetics, 49(2), 178–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mittal, P. & Roberts, C. W. (2020). The SWI/SNF complex in cancer-biology, biomarkers and therapy. Nature Reviews Clinical Oncology, 17, 435–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Weissman, B., & Knudsen, K. E. (2009). Hijacking the chromatin remodeling machinery: impact of SWI/SNF perturbations in cancer. Cancer Research, 69(21), 8223–8230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bashyam, M. D., Srinivas, A., & Pratyusha, B. (2019). Taming the Master: SWI/SNF chromatin remodeler as a therapeutic target in cancer. Current Science, 116(10), 1653–1665.

    Article  CAS  Google Scholar 

  104. Hu, B., Lin, J. Z., Yang, X. B., & Sang, X. T. (2020). The roles of mutated SWI/SNF complexes in the initiation and development of hepatocellular carcinoma and its regulatory effect on the immune system: a review. Cell Proliferation, 53(4), e12791.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Romero, O., & Sanchez-Cespedes, M. (2014). The SWI/SNF genetic blockade: effects in cell differentiation, cancer and developmental diseases. Oncogene, 33(21), 2681–2689.

    Article  CAS  PubMed  Google Scholar 

  106. Chory, E. J., Kirkland, J. G., Chang, C.-Y., D’Andrea, V. D., Gourisankar, S., Dykhuizen, E. C., & Crabtree, G. R. (2020). Chemical Inhibitors of a Selective SWI/SNF Function Synergize with ATR Inhibition in Cancer Cell Killing. ACS Chemical Biology, 15, 1685–1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shorstova, T., Marques, M., Su, J., Johnston, J., Kleinman, C. L., Hamel, N., & Witcher, M. (2019). SWI/SNF-compromised cancers are susceptible to bromodomain inhibitors. Cancer Research, 79(10), 2761–2774.

    Article  CAS  PubMed  Google Scholar 

  108. Sendinc, E., Jambhekar, A., & Shi, Y. (2015). Remodeling your way out of cell cycle. Cell, 162(2), 237–238.

    Article  CAS  PubMed  Google Scholar 

  109. van der Vaart, A., Godfrey, M., Portegijs, V., & van den Heuvel, S. (2020). Dose-dependent functions of SWI/SNF BAF in permitting and inhibiting cell proliferation in vivo. Science Advances, 6(21), eaay3823.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Tang, Y., Wang, J., Lian, Y., Fan, C., Zhang, P., Wu, Y., & Li, G. (2017). Linking long non-coding RNAs and SWI/SNF complexes to chromatin remodeling in cancer. Molecular Cancer, 16(1), 1–8.

    Article  CAS  Google Scholar 

  111. Wanior, M., Krämer, A., Knapp, S., & Joerger, A. C. (2021). Exploiting vulnerabilities of SWI/SNF chromatin remodeling complexes for cancer therapy. Oncogene, 40(21), 3637–3654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jordán-Pla, A., Yu, S., Waldholm, J., Källman, T., Farrants, A.-K. Ö., & Visa, N. (2018). SWI/SNF regulates half of its targets without the need of ATP-driven nucleosome remodeling by Brahma. BMC Genomics, 19(1), 1–12.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by EMR grants from Department of Science and Technology, India and Indian Council of Medical Research, India to J.S.P. Council of Scientific and Industrial Research (CSIR) is duly acknowledged for fellowships to A.S. and University of Delhi for infrastructure.

Author Contributions

A.S.: wrote the manuscript and figures, S.B.M.: wrote in part, edited and corrected the manuscript, M.M.C.: conceptualization, correction of the manuscript; J.S.P.: conceptualization, designing, flow, correction and formatting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jogeswar S. Purohit.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Modak, S.B., Chaturvedi, M.M. et al. SWI/SNF Chromatin Remodelers: Structural, Functional and Mechanistic Implications. Cell Biochem Biophys 81, 167–187 (2023). https://doi.org/10.1007/s12013-023-01140-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01140-5

Keywords

Navigation