Skip to main content
Log in

DNA repair and recombination functions in Arabidopsis telomere maintenance

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

In this review, we discuss recent advances in the knowledge of plant telomere maintenance, focusing on the model plant Arabidopsis thaliana and, in particular, on the roles of proteins involved in DNA repair and recombination. The question of the interrelationships between DNA repair and recombination pathways and proteins with telomere function and maintenance is of increasing interest and has been the subject of a number of recent reviews (Cech 2004, d’Adda di Fagagna et al. 2004, Hande 2004, Harrington 2004, Maser & DePinho 2004). Understanding of telomere biology, DNA repair and recombination in plants has rapidly progressed over the last decade, substantially due to genetic approaches in Arabidopsis, and we feel that this is an appropriate time to review current knowledge in this field. A number of recent reviews have dealt more generally with the subject of plant telomere structure and evolution (Riha et al. 2001, McKnight et al. 2002, Riha & Shippen 2003b, McKnight & Shippen 2004, Fajkus et al. 2005) and we thus focus specifically on plant telomere biology in the context of DNA repair and recombination in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagherieh-Najjar MB, de Vries OM, Kroon JT et al. (2003) Arabidopsis RecQsim, a plant-specific member of the RecQ helicase family, can suppress the MMS hypersensitivity of the yeast sgs1 mutant. Plant Mol Biol 52: 273–284.

    Article  PubMed  Google Scholar 

  • Bailey SM, Meyne J, Chen DJ et al. (1999) DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes. Proc Natl Acad Sci USA 96: 14899–14904.

    Article  PubMed  Google Scholar 

  • Baumann P, Cech TR (2000) Protection of telomeres by the Ku protein in fission yeast. Mol Biol Cell 11: 3265–3275.

    PubMed  Google Scholar 

  • Blackburn EH (2005) Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett 579: 859–862.

    Article  PubMed  Google Scholar 

  • Blasco MA (2005) Mice with bad ends: mouse models for the study of telomeres and telomerase in cancer and aging. EMBO J 24: 1095–1103.

    Article  PubMed  Google Scholar 

  • Bleuyard JY, White CI (2004) The Arabidopsis homologue of Xrcc3 plays an essential role in meiosis. EMBO J 23: 439–449.

    PubMed  Google Scholar 

  • Bleuyard JY, Gallego ME, White CI (2004a) Meiotic defects in the Arabidopsis rad50 mutant point to conservation of the MRX complex function in early stages of meiotic recombination. Chromosoma 113: 197–203.

    Article  Google Scholar 

  • Bleuyard JY, Gallego ME, White CI (2004b) The atspo11-1 mutation rescues atxrcc3 meiotic chromosome fragmentation. Plant Mol Biol 56: 217–224.

    Article  PubMed  Google Scholar 

  • Bleuyard JY, Gallego ME, Savigny F, White CI (2005) Differing requirements for the Arabidopsis Rad51 paralogs in meiosis and DNA repair. Plant J 41: 533–545.

    Article  PubMed  Google Scholar 

  • Boulton SJ, Jackson SP (1996a) Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res 24: 4639–4648.

    Google Scholar 

  • Boulton SJ, Jackson SP (1996b) Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J 15: 5093–5103.

    PubMed  Google Scholar 

  • Boulton SJ, Jackson SP (1998) Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J 17: 1819–1828.

    Article  PubMed  Google Scholar 

  • Bradshaw PS, Stavropoulos DJ, Meyn MS (2005) Human telomeric protein TRF2 associates with genomic double-strand breaks as an early response to DNA damage. Nat Genet 37: 193–197.

    Article  PubMed  Google Scholar 

  • Bundock P, Hooykaas P (2002) Severe developmental defects, hypersensitivity to DNA-damaging agents, and lengthened telomeres in Arabidopsis MRE11 mutants. Plant Cell 14: 2451–2462.

    Article  PubMed  Google Scholar 

  • Bundock P, van Attikum H, Hooykaas P (2002) Increased telomere length and hypersensitivity to DNA damaging agents in an Arabidopsis KU70 mutant. Nucleic Acids Res 30: 3395–3400.

    Article  PubMed  Google Scholar 

  • Cech TR (2004) Beginning to understand the end of the chromosome. Cell 116: 273–279.

    Article  PubMed  Google Scholar 

  • Chai W, Ford LP, Lenertz L, Wright WE, Shay JW (2002) Human Ku70/80 associates physically with telomerase through interaction with hTERT. J Biol Chem 277: 47242–47247.

    Article  PubMed  Google Scholar 

  • Chen CM, Wang CT, Ho CH (2001) A plant gene encoding a Myb-like protein that binds telomeric GGTTAG repeats in vitro. J Biol Chem 276: 16511–16519.

    Article  PubMed  Google Scholar 

  • Ciapponi L, Cenci G, Ducau J et al. (2004) The Drosophila Mre11/Rad50 complex is required to prevent both telomeric fusion and chromosome breakage. Curr Biol 14: 1360–1366.

    Article  PubMed  Google Scholar 

  • d’Adda di Fagagna F, Hande MP, Tong WM et al. (2001) Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr Biol 11: 1192–1196.

    PubMed  Google Scholar 

  • d’Adda di Fagagna F, Teo SH, Jackson SP (2004) Functional links between telomeres and proteins of the DNA-damage response. Genes Dev 18: 1781–1799.

    Article  PubMed  Google Scholar 

  • Daoudal-Cotterell S, Gallego ME, White CI (2002) The plant Rad50-Mre11 protein complex. FEBS Lett 516: 164–166.

    Article  PubMed  Google Scholar 

  • Diede SJ, Gottschling DE (2001) Exonuclease activity is required for sequence addition and Cdc13p loading at a de novo telomere. Curr Biol 11: 1336–1340.

    Article  PubMed  Google Scholar 

  • Doutriaux MP, Couteau F, Bergounioux C, White C (1998) Isolation and characterisation of the RAD51 and DMC1 homologs from Arabidopsis thaliana. Mol Gen Genet 257: 283–291.

    Article  PubMed  Google Scholar 

  • Downs JA, Jackson SP (2004) A means to a DNA end: the many roles of Ku. Nat Rev, Mol Cell Biol 5: 367–378.

    Google Scholar 

  • Dubest S, Gallego ME, White CI (2002) Role of the AtRad1p endonuclease in homologous recombination in plants. EMBO Rep 3: 1049–1054.

    Article  PubMed  Google Scholar 

  • Dubest S, Gallego ME, White CI (2004) Roles of the AtErcc1 protein in recombination. Plant J 39: 334–342.

    Article  PubMed  Google Scholar 

  • DuBois ML, Haimberger ZW, McIntosh MW, Gottschling DE (2002) A quantitative assay for telomere protection in Saccharomyces cerevisiae. Genetics 161: 995–1013.

    PubMed  Google Scholar 

  • Espejel S, Franco S, Rodriguez-Perales S, Bouffler SD, Cigudosa JC, Blasco MA (2002) Mammalian Ku86 mediates chromosomal fusions and apoptosis caused by critically short telomeres. EMBO J 21: 2207–2219.

    Article  PubMed  Google Scholar 

  • Fajkus J, Sykorova E, Leitch AR (2005) Telomeres in evolution and evolution in telomeres. Chromosom Res 13: 469–479.

    Google Scholar 

  • Ferreira MG, Cooper JP (2001) The fission yeast Taz1 protein protects chromosomes from Ku-dependent end-to-end fusions. Mol Cell 7: 55–63.

    Article  PubMed  Google Scholar 

  • Ferreira MG, Miller KM, Cooper JP (2004) Indecent exposure: when telomeres become uncapped. Mol Cell 13: 7–18.

    Article  PubMed  Google Scholar 

  • Fidantsef AL, Mitchell DL, Britt AB (2000) The Arabidopsis UVH1 gene is a homolog of the yeast repair endonuclease RAD1. Plant Physiol 124: 579–586.

    Article  PubMed  Google Scholar 

  • Fisher TS, Taggart AK, Zakian VA (2004) Cell cycle-dependent regulation of yeast telomerase by Ku. Nat Struct Mol Biol 11: 1198–1205.

    Article  PubMed  Google Scholar 

  • Fitzgerald MS, Riha K, Gao F, Ren S, McKnight TD, Shippen DE (1999) Disruption of the telomerase catalytic subunit gene from Arabidopsis inactivates telomerase and leads to a slow loss of telomeric DNA. Proc Natl Acad Sci USA 96: 14813–14818.

    Article  PubMed  Google Scholar 

  • Friesner J, Britt AB (2003) Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. Plant J 34: 427–440.

    Article  PubMed  Google Scholar 

  • Friesner JD, Liu B, Culligan K, Britt AB (2005) Ionizing radiation-dependent γ-H2AX focus formation requires ATM and ATR. Mol Biol Cell 16: 2566–2576.

    Google Scholar 

  • Gallego ME, White CI (2001) RAD50 function is essential for telomere maintenance in Arabidopsis. Proc Natl Acad Sci USA 98: 1711–1716.

    Article  PubMed  Google Scholar 

  • Gallego F, Fleck O, Li A, Wyrzykowska J, Tinland B (2000) AtRAD1, a plant homologue of human and yeast nucleotide excision repair endonucleases, is involved in dark repair of UV damages and recombination. Plant J 21: 507–518.

    Article  PubMed  Google Scholar 

  • Gallego ME, Jeanneau M, Granier F, Bouchez D, Bechtold N, White CI (2001) Disruption of the Arabidopsis RAD50 gene leads to plant sterility and MMS sensitivity. Plant J 25: 31–41.

    Article  PubMed  Google Scholar 

  • Gallego ME, Bleuyard JY, Daoudal-Cotterell S, Jallut N, White CI (2003a) Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. Plant J 35: 557–565.

    Article  PubMed  Google Scholar 

  • Gallego ME, Jalut N, White CI (2003b) Telomerase dependence of telomere lengthening in Ku80 mutant Arabidopsis. Plant Cell 15: 782–789.

    Article  Google Scholar 

  • Garcia V, Salanoubat M, Choisne N, Tissier A (2000) An ATM homologue from Arabidopsis thaliana: complete genomic organisation and expression analysis. Nucleic Acids Res 28: 1692–1699.

    Article  PubMed  Google Scholar 

  • Garcia V, Bruchet H, Camescasse D, Granier F, Bouchez D, Tissier A (2003) AtATM is essential for meiosis and the somatic response to DNA damage in plants. Plant Cell 15: 119–132.

    Article  PubMed  Google Scholar 

  • Gherbi H, Gallego ME, Jalut N, Lucht JM, Hohn B, White CI (2001) Homologous recombination in planta is stimulated in the absence of Rad50. EMBO Rep 2: 287–291.

    Article  PubMed  Google Scholar 

  • Glazov E, Phillips K, Budziszewski GJ, Schob H, Meins F Jr, Levin JZ (2003) A gene encoding an RNase D exonuclease-like protein is required for post-transcriptional silencing in Arabidopsis. Plant J 35: 342–349.

    Article  PubMed  Google Scholar 

  • Goytisolo FA, Samper E, Edmonson S, Taccioli GE, Blasco MA (2001) The absence of the DNA-dependent protein kinase catalytic subunit in mice results in anaphase bridges and in increased telomeric fusions with normal telomere length and G-strand overhang. Mol Cell Biol 21: 3642–3651.

    Article  PubMed  Google Scholar 

  • Gravel S, Larrivee M, Labrecque P, Wellinger RJ (1998) Yeast Ku as a regulator of chromosomal DNA end structure. Science 280: 741–744.

    Article  PubMed  Google Scholar 

  • Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43: 405–413.

    Article  PubMed  Google Scholar 

  • Greider CW, Blackburn EH (1987) The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51: 887–898.

    Article  PubMed  Google Scholar 

  • Hande MP (2004) DNA repair factors and telomere-chromosome integrity in mammalian cells. Cytogenet Genome Res 104: 116–122.

    Article  PubMed  Google Scholar 

  • Harrington L (2004) Those dam-aged telomeres! Curr Opin Genet Dev 14: 22–28.

    Article  Google Scholar 

  • Hartung F, Plchova H, Puchta H (2000) Molecular characterisation of RecQ homologues in Arabidopsis thaliana. Nucleic Acids Res 28: 4275–4282.

    Article  PubMed  Google Scholar 

  • Heacock M, Spangler E, Riha K, Puizina J, Shippen DE (2004) Molecular analysis of telomere fusions in Arabidopsis: multiple pathways for chromosome end-joining. EMBO J 23: 2304–2313.

    Article  PubMed  Google Scholar 

  • Hefner E, Preuss SB, Britt AB (2003) Arabidopsis mutants sensitive to gamma radiation include the homologue of the human repair gene ERCC1. J Exp Bot 54: 669–680.

    Article  PubMed  Google Scholar 

  • Hirata Y, Suzuki C, Sakai S (2004) Characterization and gene cloning of telomere-binding protein from tobacco BY-2 cells. Plant Physiol Biochem 42: 7–14.

    Article  PubMed  Google Scholar 

  • Hsu HL, Gilley D, Galande SA et al. (2000) Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev 14: 2807–2812.

    Article  PubMed  Google Scholar 

  • Jaco I, Munoz P, Goytisolo F et al. (2003) Role of mammalian Rad54 in telomere length maintenance. Mol Cell Biol 23: 5572–5580.

    PubMed  Google Scholar 

  • Jaco I, Munoz P, Blasco MA (2004) Role of human Ku86 in telomere length maintenance and telomere capping. Cancer Res 64: 7271–7278.

    PubMed  Google Scholar 

  • Janzen CJ, Lander F, Dreesen O, Cross GA (2004) Telomere length regulation and transcriptional silencing in KU80-deficient Trypanosoma brucei. Nucleic Acids Res 32: 6575–6584.

    Article  PubMed  Google Scholar 

  • Karamysheva ZN, Surovtseva YV, Vespa L, Shakirov EV, Shippen DE (2004) A C-terminal Myb extension domain defines a novel family of double-strand telomeric DNA-binding proteins in Arabidopsis. J Biol Chem 279: 47799–47807.

    PubMed  Google Scholar 

  • Karlseder J, Hoke K, Mirzoeva OK et al. (2004) The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response. PLoS Biol 2: E240.

    PubMed  Google Scholar 

  • Kironmai KM, Muniyappa K (1997) Alteration of telomeric sequences and senescence caused by mutations in RAD50 of Saccharomyces cerevisiae. Genes Cells 2: 443–455.

    PubMed  Google Scholar 

  • Kuchar M, Fajkus J (2004) Interactions of putative telomere-binding proteins in Arabidopsis thaliana: identification of functional TRF2 homolog in plants. FEBS Lett 578: 311–315.

    Article  PubMed  Google Scholar 

  • Kwon C, Chung IK (2004) Interaction of an Arabidopsis RNA-binding protein with plant single-stranded telomeric DNA modulates telomerase activity. J Biol Chem 279: 12812–12818.

    Article  PubMed  Google Scholar 

  • Larrivee M, LeBel C, Wellinger RJ (2004) The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex. Genes Dev 18: 1391–1396.

    Article  PubMed  Google Scholar 

  • Lee JH, Kim JH, Kim WT, Kang BG, Chung IK (2000) Characterization and developmental expression of single-stranded telomeric DNA-binding proteins from mung bean (Vigna radiata). Plant Mol Biol 42: 547–557.

    PubMed  Google Scholar 

  • Li A, Schuermann D, Gallego F, Kovalchuk I, Tinland B (2002) Repair of damaged DNA by Arabidopsis cell extract. Plant Cell 14: 263–273.

    Article  PubMed  Google Scholar 

  • Li W, Chen C, Markmann-Mulisch U et al. (2004) The Arabidopsis AtRAD51 gene is dispensable for vegetative development but required for meiosis. Proc Natl Acad Sci USA 101: 10596–10601.

    PubMed  Google Scholar 

  • Liti G, Louis EJ (2003) NEJ1 prevents NHEJ-dependent telomere fusions in yeast without telomerase. Mol Cell 11: 1373–1378.

    PubMed  Google Scholar 

  • Liu Z, Hossain GS, Islas-Osuna MA, Mitchell DL, Mount DW (2000) Repair of UV damage in plants by nucleotide excision repair: Arabidopsis UVH1 DNA repair gene is a homolog of Saccharomyces cerevisiae Rad1. Plant J 21: 519–528.

    Article  PubMed  Google Scholar 

  • Lundblad V (2002) Telomere maintenance without telomerase. Oncogene 21: 522–531.

    Article  PubMed  Google Scholar 

  • Ma JL, Kim EM, Haber JE, Lee SE (2003) Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences. Mol Cell Biol 23: 8820–8828.

    Article  PubMed  Google Scholar 

  • Marian CO, Bordoli SJ, Goltz M et al. (2003) The maize Single myb histone 1 gene, Smh1, belongs to a novel gene family and encodes a protein that binds telomere DNA repeats in vitro. Plant Physiol 133: 1336–1350.

    Article  PubMed  Google Scholar 

  • Maringele L, Lydall D (2002) EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. Genes Dev 16: 1919–1933.

    Article  PubMed  Google Scholar 

  • Maser RS, DePinho RA (2004) Telomeres and the DNA damage response: why the fox is guarding the henhouse. DNA Repair (Amst) 3: 979–988.

    Article  Google Scholar 

  • McKnight TD, Shippen DE (2004) Plant telomere biology. Plant Cell 16: 794–803.

    Article  PubMed  Google Scholar 

  • McKnight TD, Riha K, Shippen DE (2002) Telomeres, telomerase, and stability of the plant genome. Plant Mol Biol 48: 331–337.

    Article  PubMed  Google Scholar 

  • Mimori T, Akizuki M, Yamagata H, Inada S, Yoshida S, Homma M (1981) Characterization of a high molecular weight acidic nuclear protein recognized by autoantibodies in sera from patients with polymyositis-scleroderma overlap. J Clin Invest 68: 611–620.

    PubMed  Google Scholar 

  • Moreau S, Ferguson JR, Symington LS (1999) The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol Cell Biol 19: 556–566.

    PubMed  Google Scholar 

  • Moyzis RK, Buckingham JM, Cram LS et al. (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85: 6622–6626.

    Google Scholar 

  • Myung K, Ghosh G, Fattah FJ et al. (2004) Regulation of telomere length and suppression of genomic instability in human somatic cells by Ku86. Mol Cell Biol 24: 5050–5059.

    Article  PubMed  Google Scholar 

  • Nugent CI, Bosco G, Ross LO et al. (1998) Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr Biol 8: 657–660.

    Article  PubMed  Google Scholar 

  • Oguchi K, Liu H, Tamura K, Takahashi H (1999) Molecular cloning and characterization of AtTERT, a telomerase reverse transcriptase homolog in Arabidopsis thaliana. FEBS Lett 457: 465–469.

    Article  PubMed  Google Scholar 

  • Osakabe K, Yoshioka T, Ichikawa H, Toki S (2002) Molecular cloning and characterization of RAD51-like genes from Arabidopsis thaliana. Plant Mol Biol 50: 71–81.

    Article  PubMed  Google Scholar 

  • Peterson SE, Stellwagen AE, Diede SJ et al. (2001) The function of a stem-loop in telomerase RNA is linked to the DNA repair protein Ku. Nat Genet 27: 64–67.

    PubMed  Google Scholar 

  • Plchova H, Hartung F, Puchta H (2003) Biochemical characterization of an exonuclease from Arabidopsis thaliana reveals similarities to the DNA exonuclease of the human Werner syndrome protein. J Biol Chem 278: 44128–44138.

    Article  PubMed  Google Scholar 

  • Polotnianka RM, Li J, Lustig AJ (1998) The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr Biol 8: 831–834.

    Article  PubMed  Google Scholar 

  • Porter SE, Greenwell PW, Ritchie KB, Petes TD (1996) The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res 24: 582–585.

    Article  PubMed  Google Scholar 

  • Puizina J, Siroky J, Mokros P, Schweizer D, Riha K (2004) Mre11 deficiency in Arabidopsis is associated with chromosomal instability in somatic cells and Spo11-dependent genome fragmentation during meiosis. Plant Cell 16: 1968–1978.

    Article  PubMed  Google Scholar 

  • Reddel RR (2003) Alternative lengthening of telomeres, telomerase, and cancer. Cancer Lett 194: 155–162.

    Article  PubMed  Google Scholar 

  • Reddel RR, Bryan TM, Colgin LM, Perrem KT, Yeager TR (2001) Alternative lengthening of telomeres in human cells. Radiat Res 155: 194–200.

    PubMed  Google Scholar 

  • Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53: 127–136.

    Google Scholar 

  • Riha K, Shippen DE (2003a) Ku is required for telomeric C-rich strand maintenance but not for end-to-end chromosome fusions in Arabidopsis. Proc Natl Acad Sci USA 100: 611–615.

    Article  Google Scholar 

  • Riha K, Shippen DE (2003b) Telomere structure, function and maintenance in Arabidopsis. Chromosom Res 11: 263–275.

    Article  Google Scholar 

  • Riha K, McKnight TD, Griffing LR, Shippen DE (2001) Living with genome instability: plant responses to telomere dysfunction. Science 291: 1797–1800.

    Article  PubMed  Google Scholar 

  • Riha K, Watson JM, Parkey J, Shippen DE (2002) Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. EMBO J 21: 2819–2826.

    Article  PubMed  Google Scholar 

  • Samper E, Goytisolo FA, Slijepcevic P, van Buul PP, Blasco MA (2000) Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep 1: 244–252.

    Article  PubMed  Google Scholar 

  • Schrumpfova P, Kuchar M, Mikova G, Skrisovska L, Kubicarova T, Fajkus J (2004) Characterization of two Arabidopsis thaliana myb-like proteins showing affinity to telomeric DNA sequence. Genome 47: 316–324.

    PubMed  Google Scholar 

  • Smogorzewska A, de Lange T (2004) Regulation of telomerase by telomeric proteins. Annu Rev Biochem 73: 177–208.

    Google Scholar 

  • Smogorzewska A, Karlseder J, Holtgreve-Grez H, Jauch A, de Lange T (2002) DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr Biol 12: 1635–1644.

    Article  PubMed  Google Scholar 

  • Stellwagen AE, Haimberger ZW, Veatch JR, Gottschling DE (2003) Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev 17: 2384–2395.

    Article  PubMed  Google Scholar 

  • Tamura K, Adachi Y, Chiba K, Oguchi K, Takahashi H (2002) Identification of Ku70 and Ku80 homologues in Arabidopsis thaliana: evidence for a role in the repair of DNA double-strand breaks. Plant J 29: 771–781.

    Article  PubMed  Google Scholar 

  • Tarsounas M, Munoz P, Claas A et al. (2004) Telomere maintenance requires the RAD51D recombination/repair protein. Cell 117: 337–347.

    Article  PubMed  Google Scholar 

  • Ting NS, Yu Y, Pohorelic B, Lees-Miller SP, Beattie TL (2005) Human Ku70/80 interacts directly with hTR, the RNA component of human telomerase. Nucleic Acids Res 33: 2090–2098.

    PubMed  Google Scholar 

  • Tomaska L, McEachern MJ, Nosek J (2004) Alternatives to telomerase: keeping linear chromosomes via telomeric circles. FEBS Lett 567: 142–146.

    Article  PubMed  Google Scholar 

  • Tsukamoto Y, Taggart AK, Zakian VA (2001) The role of the Mre11-Rad50-Xrs2 complex in telomerase-mediated lengthening of Saccharomyces cerevisiae telomeres. Curr Biol 11: 1328–1335.

    Article  PubMed  Google Scholar 

  • van Attikum H, Bundock P, Overmeer RM, Lee LY, Gelvin SB, Hooykaas PJ (2003) The Arabidopsis AtLIG4 gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA. Nucleic Acids Res 31: 4247–4255.

    Article  PubMed  Google Scholar 

  • van Steensel B, Smogorzewska A, de Lange T (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92: 401–413.

    Article  PubMed  Google Scholar 

  • Vonarx EJ, Howlett NG, Schiestl RH, Kunz BA (2002) Detection of Arabidopsis thaliana AtRAD1 cDNA variants and assessment of function by expression in a yeast rad1 mutant. Gene 296: 1–9.

    Article  PubMed  Google Scholar 

  • Walbot V (1996) Sources and consequences of phenotypic and genotypic plasticity in flowering plants. Trends Plant Sci 1: 27–32.

    Google Scholar 

  • Wei C, Skopp R, Takata M, Takeda S, Price CM (2002) Effects of double-strand break repair proteins on vertebrate telomere structure. Nucleic Acids Res 30: 2862–2870.

    Article  PubMed  Google Scholar 

  • West CE, Waterworth WM, Jiang Q, Bray CM (2000) Arabidopsis DNA ligase IV is induced by gamma-irradiation and interacts with an Arabidopsis homologue of the double strand break repair protein XRCC4. Plant J 24: 67–78.

    Article  PubMed  Google Scholar 

  • West CE, Waterworth WM, Story GW, Sunderland PA, Jiang Q, Bray CM (2002) Disruption of the Arabidopsis AtKu80 gene demonstrates an essential role for AtKu80 protein in efficient repair of DNA double-strand breaks in vivo. Plant J 31: 517–528.

    Article  PubMed  Google Scholar 

  • Yang SW, Kim DH, Lee JJ et al. (2003) Expression of the telomeric repeat binding factor gene NgTRF1 is closely coordinated with the cell division program in tobacco BY-2 suspension culture cells. J Biol Chem 278: 21395–21407.

    Article  PubMed  Google Scholar 

  • Yang SW, Kim SK, Kim WT (2004) Perturbation of NgTRF1 expression induces apoptosis-like cell death in tobacco BY-2 cells and implicates NgTRF1 in the control of telomere length and stability. Plant Cell 16: 3370–3385.

    Article  PubMed  Google Scholar 

  • Yu EY, Kim SE, Kim JH, Ko JH, Cho MH, Chung IK (2000) Sequence-specific DNA recognition by the Myb-like domain of plant telomeric protein RTBP1. J Biol Chem 275: 24208–24214.

    Article  PubMed  Google Scholar 

  • Zentgraf U (1995) Telomere-binding proteins of Arabidopsis thaliana. Plant Mol Biol 27: 467–475.

    Article  PubMed  Google Scholar 

  • Zentgraf U, Hinderhofer K, Kolb D (2000) Specific association of a small protein with the telomeric DNA–protein complex during the onset of leaf senescence in Arabidopsis thaliana. Plant Mol Biol 42: 429–438.

    Article  PubMed  Google Scholar 

  • Zhu XD, Niedernhofer L, Kuster B, Mann M, Hoeijmakers JH, deLange T (2003) ERCC1/XPF removes the 3′ overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol Cell 12: 1489–1498.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles I. White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallego, M.E., White, C.I. DNA repair and recombination functions in Arabidopsis telomere maintenance. Chromosome Res 13, 481–491 (2005). https://doi.org/10.1007/s10577-005-0995-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-005-0995-4

Key words

Navigation