Skip to main content
Log in

Telomere-binding proteins of Arabidopsis thaliana

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The nucleoprotein structure of Arabidopsis thaliana telomeres was investigated. A protein specifically binding to telomeric sequences was characterized by gel mobility shift assays with synthetic oligonucleotides consisting of four 7 bp telomeric repeats of Arabidopsis (TTTAGGG) and crude nuclear protein extracts of Arabidopsis leaves. These DNA-protein binding studies revealed that the binding affinity of this telomere-binding protein to the G-rich single-strand as well as to the double-stranded telomeric DNA is much higher than to the C-rich single-strand. The molecular mass of the protein was identified by SDS-PAGE to be 67 kDa. The isoelectric points were determined to be 5.0, 4.85 and 4.7, respectively, indicating that either one protein with different modifications or three slightly different proteins have been isolated. An RNA component, possibly serving as a template for reverse transcription of a plant telomerase, does not mediate the DNA-protein contact because the DNA-protein interactions were not RNAse-sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agard DA, Sedat JW: Three dimensional architecture of a polythene nucleus. Nature 302: 676–681 (1983).

    PubMed  Google Scholar 

  2. Allshire RC, Gosden JR, Cross SH, Cranston G, Rout D, Sugawara N, Szostak JW, Fantes PA, Hastie ND: Telomeric repeat from T. thermophila cross hybridizes with human telomeres. Nature 332: 656–659 (1988).

    Article  PubMed  Google Scholar 

  3. Blackburn EH, Szostak JW: The molecular structure of centromeres and telomeres. Annu Rev Biochem 53: 163–194 (1984).

    Article  PubMed  Google Scholar 

  4. Blackburn EH: Structure and function of telomeres. Nature 350: 569–573 (1991).

    Article  PubMed  Google Scholar 

  5. Bugaeva EA, Parfenov VN, Podgornaya OI: The diplotene frog oocyte nuclear envelope possesses telomerbinding activity. Mol Biol 26: 654–660 (1993).

    Google Scholar 

  6. Burr B, Burr FA, Matz EC, Romero-Severson J: Pinning down loose ends: mapping telomeres and factors affecting their length. Plant Cell 4: 953–960 (1992).

    Article  PubMed  Google Scholar 

  7. Carson MJ, Hartwell L: CDC17: An essential gene that prevents telomere elongation in yeast. Cell 42: 249–257 (1985).

    PubMed  Google Scholar 

  8. Conrad MN, Wright JH, Wolf AJ, Zakian VA: RAP1 protein interacts with yeast telomeres in vivo: overproduktion alters telomere structure and decreases chromosome stability. Cell 63: 739–750 (1990).

    Article  PubMed  Google Scholar 

  9. de Lange T: Human telomeres are attached to the nuclear matrix. EMBO J 11: 717–724 (1992).

    PubMed  Google Scholar 

  10. Fang G, Cech TR: Oxytricha telomere-binding protein: DNA-dependent dimerization of the a and β subunits. Proc Natl Acad Sci USA 90: 6056–6060 (1993).

    PubMed  Google Scholar 

  11. Fang G, Cech TR: The β subunit of Oxytricha telomerbinding protein promotes G-quartet formation by telomeric DNA. Cell 74: 875–885 (1993).

    Article  PubMed  Google Scholar 

  12. Fang G, Gray JT, Cech TR: Oxytricha telomere-binding protein: separable DNA-binding and dimerization domains of the α subunit. Genes Devel 7: 870–882 (1993).

    PubMed  Google Scholar 

  13. Franke WW: Nuclear lamins and cytoplasmic intermediate filament proteins: a growing multigene family. Cell 48: 3–4 (1987).

    Article  PubMed  Google Scholar 

  14. Ganal MW, Lapitan NLV, Thanksley SD: Macrostructure of the tomato telomeres. Plant Cell 3: 87–94 (1991).

    Article  PubMed  Google Scholar 

  15. Gerace L, Burke B: Functional organization of the nuclear envelope. Ann Rev Cell Biol 4: 335–374 (1988).

    PubMed  Google Scholar 

  16. Gottschling DE, Zakian VA: Telomere proteins: specific recognition and protection of the natural termine of Oxytricha macronuclear DNA. Cell 47: 195–205 (1986).

    Article  PubMed  Google Scholar 

  17. Gray JT, Celander DW, Price CM, Cech TR: Cloning and expression of the genes for the Oxytricha telomere binding proteins: specific subunit interaction in the telomeric complex. Cell 67: 807–814 (1991).

    Article  PubMed  Google Scholar 

  18. Greider CW, Blackburn EH: A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337: 331–337 (1989).

    Article  PubMed  Google Scholar 

  19. Greider CW, Blackburn EH: Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43: 405–413 (1985).

    Article  PubMed  Google Scholar 

  20. Greider CW, Blackburn EH: The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51: 887–898 (1987).

    Article  PubMed  Google Scholar 

  21. Gualberto A, Patrick RM, Walsh K: Nucleic acid specificity of a vertebrate telomere-binding protein: evidence for G-G base pair recognition at the core-binding site. Genes Devel 6: 815–824 (1992).

    PubMed  Google Scholar 

  22. Hemleben V, Leweke B, Roth A, Stadler J: Organization of highly repetitive satellite DNA of two cucurbitaceae species (Cucmis melo and Cucumis sativus). Nucl Acids Res 10: 631–644 (1982).

    PubMed  Google Scholar 

  23. Henderson EF, Blackburn EH: An overhanging 3′ terminus is a conserved feature of telomeres. Mol Cell Biol 9: 345–348 (1989).

    PubMed  Google Scholar 

  24. Kipling D, Cooke HJ: Hypervariable ultra-long telomeres in mice. Nature 347: 400–402 (1990).

    Article  PubMed  Google Scholar 

  25. Klobutcher LA, Swanton MT, Donini P, Prescott DM: All gene-sized DNA molecules in four species of hypotrichs have the same terminal sequences and an unusual 3′ terminus. Proc Natl Acad Sci USA 78: 3015–3019 (1981).

    PubMed  Google Scholar 

  26. Kyrion G, Liu K, Lustig AJ: RAP1 and telomere structure regulate telomere position effects in Saccharomyces cerevisiae. Genes Devel 7: 1146–1159 (1993).

    PubMed  Google Scholar 

  27. Lipps HJ: In vitro aggregation of the gene-sized DNA molecules of the ciliate Stylonychia mytilus. Proc Natl Acad Sci USA 77: 4104–4107 (1980).

    PubMed  Google Scholar 

  28. Liu Z, Tye BK: A yeast protein that binds to vertebrate telomeres and conserved yeast telomeric junctions. Genes Devel 5: 49–59 (1991).

    PubMed  Google Scholar 

  29. Lundblad V, Blackburn EH: RNA-dependent polymerase motifs in EST1: tentative identification of a protein component of an essential yeast polymerase. Cell 60: 529–530 (1990).

    Article  PubMed  Google Scholar 

  30. Lustig AJ, Kurtz S, Shore D: Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length. Science 250: 549–553 (1990).

    PubMed  Google Scholar 

  31. McClintock B: The fusion of broken ends of chromosomes following nuclear fusion. Proc Natl Acad Sci USA 28: 458–463 (1942).

    Google Scholar 

  32. McClintock B: The stability of broken ends of chromosomes in Zea mays. Genetics 26: 234–282 (1941).

    Google Scholar 

  33. Muller HJ: The remaking of chromosomes. Collecting Nets-Woods Hole 13: 181–198 (1938).

    Google Scholar 

  34. Price CM, Cech TR: Properties of the telomeric DNA-binding protein from Oxytricha nova. Biochemistry 28: 769–774 (1989).

    PubMed  Google Scholar 

  35. Price CM, Skopp R, Krueger J, DeWright W: DNA recognition and binding by the Euplotes telomere protein. Biochemistry 31: 10835–10843 (1992).

    PubMed  Google Scholar 

  36. Price CM: Telomere structure in Euplotes crassus: characterization of DNA-protein interactions and isolation of a telomere binding protein. Mol Cell Biol 10: 3421–3431 (1990).

    PubMed  Google Scholar 

  37. Rawlins DJ, Highett MI, Shaw PJ: Localization of telomeres in plant interphase nuclei by in situ hybridazation and 3 D confocal microscopy. Chromosoma 100: 424–431 (1991).

    Google Scholar 

  38. Regad F, Lebas M, Lescure B: Interstitial telomeric repeats within the Arabidopsis thaliana genome. J Mol Biol 239: 163–169 (1994).

    Article  PubMed  Google Scholar 

  39. Richards EJ, Ausubel FM: Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53: 127–136 (1988).

    Article  PubMed  Google Scholar 

  40. Richards EJ, Goodman HM, Ausubel FM: The centromere region of Arabidopsis thaliana chromosome 1 contains telomere-similar sequences. Nucl Acids Res 19: 3351–3357 (1991).

    PubMed  Google Scholar 

  41. Romero DP, Blackburn EH: A conserved secondary structure for telomerase RNA. Cell 67: 343–353 (1991).

    Article  PubMed  Google Scholar 

  42. Shippen DE, Blackburn EH, Price CM: DNA bound by Oxytricha telomere protein is accessible to telomerase and other DNA polymerases. Proc Natl Acad Sci USA 91: 405–409 (1994).

    PubMed  Google Scholar 

  43. Smith FW, Feigon J: Strand orientation in the DNA quadruplex formed from the Oxytricha telomer repeat oligonucleotide d(G4T4G4) in solution. Biochemistry 32: 8682–8692 (1993).

    PubMed  Google Scholar 

  44. Sussel L, Shore D: Separation of transcriptional activation and silencing functions of the RAP1-encoded repressor/activator protein 1: isolation of viable mutants affecting both silencing and telomere length. Proc Natl Acad Sci USA 88: 7749–7753 (1991).

    PubMed  Google Scholar 

  45. Wang WR, Skopp R, Scofield M, Price CM: Euplotes crassus has multiple genes encoding telomere-binding proteins and telomere-binding protein homologs. Nucl Acids Res 20: 6621–6629 (1992).

    PubMed  Google Scholar 

  46. Yu GL, Bradley JD, Attardi LD, Blackburn EH: In vivo alternation of telomere sequences and senecsence caused by mutated Tetrahymena telomerase RNAs. Nature 344: 126–132 (1990).

    Article  PubMed  Google Scholar 

  47. Zahler AM, Prescott DM: Telomere terminal transferase activity in the hypotrichous ciliate Oxytricha nova and a model for replication of the linear DNA molecules. Nucl Acids Res 16: 6953–6972 (1988).

    PubMed  Google Scholar 

  48. Zakian VA: Structure and function of telomeres. Annu Rev Genet 23: 579–604 (1989).

    Article  PubMed  Google Scholar 

  49. Zentgraf U, Hemleben V: Complex formation of nuclear proteins with the RNA polymerase I promoter and repeated elements in the external transcribed spacer of Cucumis sativus ribosomal DNA. Nucl Acids Res 20: 3685–3691 (1992).

    PubMed  Google Scholar 

  50. Zhong Z, Shiue L, Kaplan S, de Lange T: A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol Cell Biol 12: 4934–4843 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zentgraf, U. Telomere-binding proteins of Arabidopsis thaliana . Plant Mol Biol 27, 467–475 (1995). https://doi.org/10.1007/BF00019314

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00019314

Key words

Navigation